Metamath Proof Explorer


Theorem smndex1n0mnd

Description: The identity of the monoid M of endofunctions on set NN0 is not contained in the base set of the constructed monoid S . (Contributed by AV, 17-Feb-2024)

Ref Expression
Hypotheses smndex1ibas.m 𝑀 = ( EndoFMnd ‘ ℕ0 )
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) )
smndex1ibas.g 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0𝑛 ) )
smndex1mgm.b 𝐵 = ( { 𝐼 } ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑛 ) } )
smndex1mgm.s 𝑆 = ( 𝑀s 𝐵 )
Assertion smndex1n0mnd ( 0g𝑀 ) ∉ 𝐵

Proof

Step Hyp Ref Expression
1 smndex1ibas.m 𝑀 = ( EndoFMnd ‘ ℕ0 )
2 smndex1ibas.n 𝑁 ∈ ℕ
3 smndex1ibas.i 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) )
4 smndex1ibas.g 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0𝑛 ) )
5 smndex1mgm.b 𝐵 = ( { 𝐼 } ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑛 ) } )
6 smndex1mgm.s 𝑆 = ( 𝑀s 𝐵 )
7 nnnn0 ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 )
8 fveq2 ( 𝑥 = 𝑁 → ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( I ↾ ℕ0 ) ‘ 𝑁 ) )
9 2 7 ax-mp 𝑁 ∈ ℕ0
10 fvresi ( 𝑁 ∈ ℕ0 → ( ( I ↾ ℕ0 ) ‘ 𝑁 ) = 𝑁 )
11 9 10 ax-mp ( ( I ↾ ℕ0 ) ‘ 𝑁 ) = 𝑁
12 8 11 eqtrdi ( 𝑥 = 𝑁 → ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = 𝑁 )
13 fveq2 ( 𝑥 = 𝑁 → ( 𝐼𝑥 ) = ( 𝐼𝑁 ) )
14 12 13 eqeq12d ( 𝑥 = 𝑁 → ( ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼𝑥 ) ↔ 𝑁 = ( 𝐼𝑁 ) ) )
15 14 notbid ( 𝑥 = 𝑁 → ( ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼𝑥 ) ↔ ¬ 𝑁 = ( 𝐼𝑁 ) ) )
16 15 adantl ( ( 𝑁 ∈ ℕ ∧ 𝑥 = 𝑁 ) → ( ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼𝑥 ) ↔ ¬ 𝑁 = ( 𝐼𝑁 ) ) )
17 nnne0 ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 )
18 17 neneqd ( 𝑁 ∈ ℕ → ¬ 𝑁 = 0 )
19 oveq1 ( 𝑥 = 𝑁 → ( 𝑥 mod 𝑁 ) = ( 𝑁 mod 𝑁 ) )
20 nnrp ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ )
21 modid0 ( 𝑁 ∈ ℝ+ → ( 𝑁 mod 𝑁 ) = 0 )
22 20 21 syl ( 𝑁 ∈ ℕ → ( 𝑁 mod 𝑁 ) = 0 )
23 19 22 sylan9eqr ( ( 𝑁 ∈ ℕ ∧ 𝑥 = 𝑁 ) → ( 𝑥 mod 𝑁 ) = 0 )
24 c0ex 0 ∈ V
25 24 a1i ( 𝑁 ∈ ℕ → 0 ∈ V )
26 3 23 7 25 fvmptd2 ( 𝑁 ∈ ℕ → ( 𝐼𝑁 ) = 0 )
27 26 eqeq2d ( 𝑁 ∈ ℕ → ( 𝑁 = ( 𝐼𝑁 ) ↔ 𝑁 = 0 ) )
28 18 27 mtbird ( 𝑁 ∈ ℕ → ¬ 𝑁 = ( 𝐼𝑁 ) )
29 7 16 28 rspcedvd ( 𝑁 ∈ ℕ → ∃ 𝑥 ∈ ℕ0 ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼𝑥 ) )
30 2 29 ax-mp 𝑥 ∈ ℕ0 ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼𝑥 )
31 rexnal ( ∃ 𝑥 ∈ ℕ0 ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼𝑥 ) ↔ ¬ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼𝑥 ) )
32 30 31 mpbi ¬ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼𝑥 )
33 fnresi ( I ↾ ℕ0 ) Fn ℕ0
34 ovex ( 𝑥 mod 𝑁 ) ∈ V
35 34 3 fnmpti 𝐼 Fn ℕ0
36 eqfnfv ( ( ( I ↾ ℕ0 ) Fn ℕ0𝐼 Fn ℕ0 ) → ( ( I ↾ ℕ0 ) = 𝐼 ↔ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼𝑥 ) ) )
37 33 35 36 mp2an ( ( I ↾ ℕ0 ) = 𝐼 ↔ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼𝑥 ) )
38 32 37 mtbir ¬ ( I ↾ ℕ0 ) = 𝐼
39 9 a1i ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → 𝑁 ∈ ℕ0 )
40 fveq2 ( 𝑥 = 𝑁 → ( ( 𝐺𝑛 ) ‘ 𝑥 ) = ( ( 𝐺𝑛 ) ‘ 𝑁 ) )
41 12 40 eqeq12d ( 𝑥 = 𝑁 → ( ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺𝑛 ) ‘ 𝑥 ) ↔ 𝑁 = ( ( 𝐺𝑛 ) ‘ 𝑁 ) ) )
42 41 notbid ( 𝑥 = 𝑁 → ( ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺𝑛 ) ‘ 𝑥 ) ↔ ¬ 𝑁 = ( ( 𝐺𝑛 ) ‘ 𝑁 ) ) )
43 42 adantl ( ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 = 𝑁 ) → ( ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺𝑛 ) ‘ 𝑥 ) ↔ ¬ 𝑁 = ( ( 𝐺𝑛 ) ‘ 𝑁 ) ) )
44 fzonel ¬ 𝑁 ∈ ( 0 ..^ 𝑁 )
45 eleq1 ( 𝑛 = 𝑁 → ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑁 ∈ ( 0 ..^ 𝑁 ) ) )
46 45 eqcoms ( 𝑁 = 𝑛 → ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑁 ∈ ( 0 ..^ 𝑁 ) ) )
47 44 46 mtbiri ( 𝑁 = 𝑛 → ¬ 𝑛 ∈ ( 0 ..^ 𝑁 ) )
48 47 con2i ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ¬ 𝑁 = 𝑛 )
49 nn0ex 0 ∈ V
50 49 mptex ( 𝑥 ∈ ℕ0𝑛 ) ∈ V
51 4 fvmpt2 ( ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ∧ ( 𝑥 ∈ ℕ0𝑛 ) ∈ V ) → ( 𝐺𝑛 ) = ( 𝑥 ∈ ℕ0𝑛 ) )
52 50 51 mpan2 ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺𝑛 ) = ( 𝑥 ∈ ℕ0𝑛 ) )
53 eqidd ( ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 = 𝑁 ) → 𝑛 = 𝑛 )
54 id ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → 𝑛 ∈ ( 0 ..^ 𝑁 ) )
55 52 53 39 54 fvmptd ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝐺𝑛 ) ‘ 𝑁 ) = 𝑛 )
56 55 eqeq2d ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ( 𝑁 = ( ( 𝐺𝑛 ) ‘ 𝑁 ) ↔ 𝑁 = 𝑛 ) )
57 48 56 mtbird ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ¬ 𝑁 = ( ( 𝐺𝑛 ) ‘ 𝑁 ) )
58 39 43 57 rspcedvd ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ∃ 𝑥 ∈ ℕ0 ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺𝑛 ) ‘ 𝑥 ) )
59 rexnal ( ∃ 𝑥 ∈ ℕ0 ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺𝑛 ) ‘ 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺𝑛 ) ‘ 𝑥 ) )
60 58 59 sylib ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ¬ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺𝑛 ) ‘ 𝑥 ) )
61 vex 𝑛 ∈ V
62 eqid ( 𝑥 ∈ ℕ0𝑛 ) = ( 𝑥 ∈ ℕ0𝑛 )
63 61 62 fnmpti ( 𝑥 ∈ ℕ0𝑛 ) Fn ℕ0
64 52 fneq1d ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝐺𝑛 ) Fn ℕ0 ↔ ( 𝑥 ∈ ℕ0𝑛 ) Fn ℕ0 ) )
65 63 64 mpbiri ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺𝑛 ) Fn ℕ0 )
66 eqfnfv ( ( ( I ↾ ℕ0 ) Fn ℕ0 ∧ ( 𝐺𝑛 ) Fn ℕ0 ) → ( ( I ↾ ℕ0 ) = ( 𝐺𝑛 ) ↔ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺𝑛 ) ‘ 𝑥 ) ) )
67 33 65 66 sylancr ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ( ( I ↾ ℕ0 ) = ( 𝐺𝑛 ) ↔ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺𝑛 ) ‘ 𝑥 ) ) )
68 60 67 mtbird ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ¬ ( I ↾ ℕ0 ) = ( 𝐺𝑛 ) )
69 68 nrex ¬ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) = ( 𝐺𝑛 )
70 38 69 pm3.2ni ¬ ( ( I ↾ ℕ0 ) = 𝐼 ∨ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) = ( 𝐺𝑛 ) )
71 1 efmndid ( ℕ0 ∈ V → ( I ↾ ℕ0 ) = ( 0g𝑀 ) )
72 49 71 ax-mp ( I ↾ ℕ0 ) = ( 0g𝑀 )
73 72 eqcomi ( 0g𝑀 ) = ( I ↾ ℕ0 )
74 73 5 eleq12i ( ( 0g𝑀 ) ∈ 𝐵 ↔ ( I ↾ ℕ0 ) ∈ ( { 𝐼 } ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑛 ) } ) )
75 elun ( ( I ↾ ℕ0 ) ∈ ( { 𝐼 } ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑛 ) } ) ↔ ( ( I ↾ ℕ0 ) ∈ { 𝐼 } ∨ ( I ↾ ℕ0 ) ∈ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑛 ) } ) )
76 resiexg ( ℕ0 ∈ V → ( I ↾ ℕ0 ) ∈ V )
77 49 76 ax-mp ( I ↾ ℕ0 ) ∈ V
78 77 elsn ( ( I ↾ ℕ0 ) ∈ { 𝐼 } ↔ ( I ↾ ℕ0 ) = 𝐼 )
79 eliun ( ( I ↾ ℕ0 ) ∈ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑛 ) } ↔ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) ∈ { ( 𝐺𝑛 ) } )
80 77 elsn ( ( I ↾ ℕ0 ) ∈ { ( 𝐺𝑛 ) } ↔ ( I ↾ ℕ0 ) = ( 𝐺𝑛 ) )
81 80 rexbii ( ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) ∈ { ( 𝐺𝑛 ) } ↔ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) = ( 𝐺𝑛 ) )
82 79 81 bitri ( ( I ↾ ℕ0 ) ∈ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑛 ) } ↔ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) = ( 𝐺𝑛 ) )
83 78 82 orbi12i ( ( ( I ↾ ℕ0 ) ∈ { 𝐼 } ∨ ( I ↾ ℕ0 ) ∈ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑛 ) } ) ↔ ( ( I ↾ ℕ0 ) = 𝐼 ∨ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) = ( 𝐺𝑛 ) ) )
84 75 83 bitri ( ( I ↾ ℕ0 ) ∈ ( { 𝐼 } ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺𝑛 ) } ) ↔ ( ( I ↾ ℕ0 ) = 𝐼 ∨ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) = ( 𝐺𝑛 ) ) )
85 74 84 bitri ( ( 0g𝑀 ) ∈ 𝐵 ↔ ( ( I ↾ ℕ0 ) = 𝐼 ∨ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) = ( 𝐺𝑛 ) ) )
86 70 85 mtbir ¬ ( 0g𝑀 ) ∈ 𝐵
87 86 nelir ( 0g𝑀 ) ∉ 𝐵