Step |
Hyp |
Ref |
Expression |
1 |
|
smndex1ibas.m |
⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) |
2 |
|
smndex1ibas.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
smndex1ibas.i |
⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) |
4 |
|
smndex1ibas.g |
⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) |
5 |
|
smndex1mgm.b |
⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) |
6 |
|
smndex1mgm.s |
⊢ 𝑆 = ( 𝑀 ↾s 𝐵 ) |
7 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
8 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( I ↾ ℕ0 ) ‘ 𝑁 ) ) |
9 |
2 7
|
ax-mp |
⊢ 𝑁 ∈ ℕ0 |
10 |
|
fvresi |
⊢ ( 𝑁 ∈ ℕ0 → ( ( I ↾ ℕ0 ) ‘ 𝑁 ) = 𝑁 ) |
11 |
9 10
|
ax-mp |
⊢ ( ( I ↾ ℕ0 ) ‘ 𝑁 ) = 𝑁 |
12 |
8 11
|
eqtrdi |
⊢ ( 𝑥 = 𝑁 → ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = 𝑁 ) |
13 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑁 ) ) |
14 |
12 13
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ↔ 𝑁 = ( 𝐼 ‘ 𝑁 ) ) ) |
15 |
14
|
notbid |
⊢ ( 𝑥 = 𝑁 → ( ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ↔ ¬ 𝑁 = ( 𝐼 ‘ 𝑁 ) ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 = 𝑁 ) → ( ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ↔ ¬ 𝑁 = ( 𝐼 ‘ 𝑁 ) ) ) |
17 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
18 |
17
|
neneqd |
⊢ ( 𝑁 ∈ ℕ → ¬ 𝑁 = 0 ) |
19 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 mod 𝑁 ) = ( 𝑁 mod 𝑁 ) ) |
20 |
|
nnrp |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
21 |
|
modid0 |
⊢ ( 𝑁 ∈ ℝ+ → ( 𝑁 mod 𝑁 ) = 0 ) |
22 |
20 21
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 mod 𝑁 ) = 0 ) |
23 |
19 22
|
sylan9eqr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 = 𝑁 ) → ( 𝑥 mod 𝑁 ) = 0 ) |
24 |
|
c0ex |
⊢ 0 ∈ V |
25 |
24
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 0 ∈ V ) |
26 |
3 23 7 25
|
fvmptd2 |
⊢ ( 𝑁 ∈ ℕ → ( 𝐼 ‘ 𝑁 ) = 0 ) |
27 |
26
|
eqeq2d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 = ( 𝐼 ‘ 𝑁 ) ↔ 𝑁 = 0 ) ) |
28 |
18 27
|
mtbird |
⊢ ( 𝑁 ∈ ℕ → ¬ 𝑁 = ( 𝐼 ‘ 𝑁 ) ) |
29 |
7 16 28
|
rspcedvd |
⊢ ( 𝑁 ∈ ℕ → ∃ 𝑥 ∈ ℕ0 ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ) |
30 |
2 29
|
ax-mp |
⊢ ∃ 𝑥 ∈ ℕ0 ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) |
31 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ ℕ0 ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ) |
32 |
30 31
|
mpbi |
⊢ ¬ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) |
33 |
|
fnresi |
⊢ ( I ↾ ℕ0 ) Fn ℕ0 |
34 |
|
ovex |
⊢ ( 𝑥 mod 𝑁 ) ∈ V |
35 |
34 3
|
fnmpti |
⊢ 𝐼 Fn ℕ0 |
36 |
|
eqfnfv |
⊢ ( ( ( I ↾ ℕ0 ) Fn ℕ0 ∧ 𝐼 Fn ℕ0 ) → ( ( I ↾ ℕ0 ) = 𝐼 ↔ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ) ) |
37 |
33 35 36
|
mp2an |
⊢ ( ( I ↾ ℕ0 ) = 𝐼 ↔ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ) |
38 |
32 37
|
mtbir |
⊢ ¬ ( I ↾ ℕ0 ) = 𝐼 |
39 |
9
|
a1i |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → 𝑁 ∈ ℕ0 ) |
40 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑁 ) ) |
41 |
12 40
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ↔ 𝑁 = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑁 ) ) ) |
42 |
41
|
notbid |
⊢ ( 𝑥 = 𝑁 → ( ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ¬ 𝑁 = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑁 ) ) ) |
43 |
42
|
adantl |
⊢ ( ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 = 𝑁 ) → ( ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ¬ 𝑁 = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑁 ) ) ) |
44 |
|
fzonel |
⊢ ¬ 𝑁 ∈ ( 0 ..^ 𝑁 ) |
45 |
|
eleq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑁 ∈ ( 0 ..^ 𝑁 ) ) ) |
46 |
45
|
eqcoms |
⊢ ( 𝑁 = 𝑛 → ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑁 ∈ ( 0 ..^ 𝑁 ) ) ) |
47 |
44 46
|
mtbiri |
⊢ ( 𝑁 = 𝑛 → ¬ 𝑛 ∈ ( 0 ..^ 𝑁 ) ) |
48 |
47
|
con2i |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ¬ 𝑁 = 𝑛 ) |
49 |
|
nn0ex |
⊢ ℕ0 ∈ V |
50 |
49
|
mptex |
⊢ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ∈ V |
51 |
4
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ∧ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ∈ V ) → ( 𝐺 ‘ 𝑛 ) = ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) |
52 |
50 51
|
mpan2 |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝑛 ) = ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) |
53 |
|
eqidd |
⊢ ( ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 = 𝑁 ) → 𝑛 = 𝑛 ) |
54 |
|
id |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → 𝑛 ∈ ( 0 ..^ 𝑁 ) ) |
55 |
52 53 39 54
|
fvmptd |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑁 ) = 𝑛 ) |
56 |
55
|
eqeq2d |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ( 𝑁 = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑁 ) ↔ 𝑁 = 𝑛 ) ) |
57 |
48 56
|
mtbird |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ¬ 𝑁 = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑁 ) ) |
58 |
39 43 57
|
rspcedvd |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ∃ 𝑥 ∈ ℕ0 ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) |
59 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ ℕ0 ¬ ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) |
60 |
58 59
|
sylib |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ¬ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) |
61 |
|
vex |
⊢ 𝑛 ∈ V |
62 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) = ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) |
63 |
61 62
|
fnmpti |
⊢ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) Fn ℕ0 |
64 |
52
|
fneq1d |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝐺 ‘ 𝑛 ) Fn ℕ0 ↔ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) Fn ℕ0 ) ) |
65 |
63 64
|
mpbiri |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝑛 ) Fn ℕ0 ) |
66 |
|
eqfnfv |
⊢ ( ( ( I ↾ ℕ0 ) Fn ℕ0 ∧ ( 𝐺 ‘ 𝑛 ) Fn ℕ0 ) → ( ( I ↾ ℕ0 ) = ( 𝐺 ‘ 𝑛 ) ↔ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
67 |
33 65 66
|
sylancr |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ( ( I ↾ ℕ0 ) = ( 𝐺 ‘ 𝑛 ) ↔ ∀ 𝑥 ∈ ℕ0 ( ( I ↾ ℕ0 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
68 |
60 67
|
mtbird |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑁 ) → ¬ ( I ↾ ℕ0 ) = ( 𝐺 ‘ 𝑛 ) ) |
69 |
68
|
nrex |
⊢ ¬ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) = ( 𝐺 ‘ 𝑛 ) |
70 |
38 69
|
pm3.2ni |
⊢ ¬ ( ( I ↾ ℕ0 ) = 𝐼 ∨ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) = ( 𝐺 ‘ 𝑛 ) ) |
71 |
1
|
efmndid |
⊢ ( ℕ0 ∈ V → ( I ↾ ℕ0 ) = ( 0g ‘ 𝑀 ) ) |
72 |
49 71
|
ax-mp |
⊢ ( I ↾ ℕ0 ) = ( 0g ‘ 𝑀 ) |
73 |
72
|
eqcomi |
⊢ ( 0g ‘ 𝑀 ) = ( I ↾ ℕ0 ) |
74 |
73 5
|
eleq12i |
⊢ ( ( 0g ‘ 𝑀 ) ∈ 𝐵 ↔ ( I ↾ ℕ0 ) ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ) |
75 |
|
elun |
⊢ ( ( I ↾ ℕ0 ) ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ↔ ( ( I ↾ ℕ0 ) ∈ { 𝐼 } ∨ ( I ↾ ℕ0 ) ∈ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ) |
76 |
|
resiexg |
⊢ ( ℕ0 ∈ V → ( I ↾ ℕ0 ) ∈ V ) |
77 |
49 76
|
ax-mp |
⊢ ( I ↾ ℕ0 ) ∈ V |
78 |
77
|
elsn |
⊢ ( ( I ↾ ℕ0 ) ∈ { 𝐼 } ↔ ( I ↾ ℕ0 ) = 𝐼 ) |
79 |
|
eliun |
⊢ ( ( I ↾ ℕ0 ) ∈ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ↔ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) ∈ { ( 𝐺 ‘ 𝑛 ) } ) |
80 |
77
|
elsn |
⊢ ( ( I ↾ ℕ0 ) ∈ { ( 𝐺 ‘ 𝑛 ) } ↔ ( I ↾ ℕ0 ) = ( 𝐺 ‘ 𝑛 ) ) |
81 |
80
|
rexbii |
⊢ ( ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) ∈ { ( 𝐺 ‘ 𝑛 ) } ↔ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) = ( 𝐺 ‘ 𝑛 ) ) |
82 |
79 81
|
bitri |
⊢ ( ( I ↾ ℕ0 ) ∈ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ↔ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) = ( 𝐺 ‘ 𝑛 ) ) |
83 |
78 82
|
orbi12i |
⊢ ( ( ( I ↾ ℕ0 ) ∈ { 𝐼 } ∨ ( I ↾ ℕ0 ) ∈ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ↔ ( ( I ↾ ℕ0 ) = 𝐼 ∨ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) = ( 𝐺 ‘ 𝑛 ) ) ) |
84 |
75 83
|
bitri |
⊢ ( ( I ↾ ℕ0 ) ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ↔ ( ( I ↾ ℕ0 ) = 𝐼 ∨ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) = ( 𝐺 ‘ 𝑛 ) ) ) |
85 |
74 84
|
bitri |
⊢ ( ( 0g ‘ 𝑀 ) ∈ 𝐵 ↔ ( ( I ↾ ℕ0 ) = 𝐼 ∨ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) ( I ↾ ℕ0 ) = ( 𝐺 ‘ 𝑛 ) ) ) |
86 |
70 85
|
mtbir |
⊢ ¬ ( 0g ‘ 𝑀 ) ∈ 𝐵 |
87 |
86
|
nelir |
⊢ ( 0g ‘ 𝑀 ) ∉ 𝐵 |