Step |
Hyp |
Ref |
Expression |
1 |
|
smndex1ibas.m |
⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) |
2 |
|
smndex1ibas.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
smndex1ibas.i |
⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) |
4 |
|
smndex1ibas.g |
⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) |
5 |
|
smndex1mgm.b |
⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) |
6 |
|
smndex1mgm.s |
⊢ 𝑆 = ( 𝑀 ↾s 𝐵 ) |
7 |
1 2 3 4 5 6
|
smndex1mgm |
⊢ 𝑆 ∈ Mgm |
8 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
9 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
10 |
8 9
|
mgmcl |
⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
11 |
7 10
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
12 |
|
snex |
⊢ { 𝐼 } ∈ V |
13 |
|
ovex |
⊢ ( 0 ..^ 𝑁 ) ∈ V |
14 |
|
snex |
⊢ { ( 𝐺 ‘ 𝑛 ) } ∈ V |
15 |
13 14
|
iunex |
⊢ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ∈ V |
16 |
12 15
|
unex |
⊢ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ∈ V |
17 |
5 16
|
eqeltri |
⊢ 𝐵 ∈ V |
18 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
19 |
6 18
|
ressplusg |
⊢ ( 𝐵 ∈ V → ( +g ‘ 𝑀 ) = ( +g ‘ 𝑆 ) ) |
20 |
17 19
|
ax-mp |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑆 ) |
21 |
20
|
eqcomi |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑀 ) |
22 |
21
|
oveqi |
⊢ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) |
23 |
1 2 3 4 5 6
|
smndex1bas |
⊢ ( Base ‘ 𝑆 ) = 𝐵 |
24 |
1 2 3 4 5
|
smndex1basss |
⊢ 𝐵 ⊆ ( Base ‘ 𝑀 ) |
25 |
23 24
|
eqsstri |
⊢ ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑀 ) |
26 |
|
ssel |
⊢ ( ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑀 ) → ( 𝑥 ∈ ( Base ‘ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝑀 ) ) ) |
27 |
|
ssel |
⊢ ( ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑀 ) → ( 𝑦 ∈ ( Base ‘ 𝑆 ) → 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) |
28 |
26 27
|
anim12d |
⊢ ( ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑀 ) → ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) ) |
29 |
25 28
|
ax-mp |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) |
30 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
31 |
1 30 18
|
efmndov |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
32 |
29 31
|
syl |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
33 |
22 32
|
eqtrid |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
34 |
11 33
|
symggrplem |
⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( +g ‘ 𝑆 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑆 ) ( 𝑏 ( +g ‘ 𝑆 ) 𝑐 ) ) ) |
35 |
34
|
rgen3 |
⊢ ∀ 𝑎 ∈ ( Base ‘ 𝑆 ) ∀ 𝑏 ∈ ( Base ‘ 𝑆 ) ∀ 𝑐 ∈ ( Base ‘ 𝑆 ) ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( +g ‘ 𝑆 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑆 ) ( 𝑏 ( +g ‘ 𝑆 ) 𝑐 ) ) |
36 |
8 9
|
issgrp |
⊢ ( 𝑆 ∈ Smgrp ↔ ( 𝑆 ∈ Mgm ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑆 ) ∀ 𝑏 ∈ ( Base ‘ 𝑆 ) ∀ 𝑐 ∈ ( Base ‘ 𝑆 ) ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( +g ‘ 𝑆 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑆 ) ( 𝑏 ( +g ‘ 𝑆 ) 𝑐 ) ) ) ) |
37 |
7 35 36
|
mpbir2an |
⊢ 𝑆 ∈ Smgrp |