| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smndex1ibas.m |
⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) |
| 2 |
|
smndex1ibas.n |
⊢ 𝑁 ∈ ℕ |
| 3 |
|
smndex1ibas.i |
⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) |
| 4 |
|
smndex1ibas.g |
⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) |
| 5 |
|
smndex1mgm.b |
⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) |
| 6 |
|
smndex1mgm.s |
⊢ 𝑆 = ( 𝑀 ↾s 𝐵 ) |
| 7 |
1 2 3 4 5 6
|
smndex1mgm |
⊢ 𝑆 ∈ Mgm |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 9 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 10 |
8 9
|
mgmcl |
⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 11 |
7 10
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 12 |
|
snex |
⊢ { 𝐼 } ∈ V |
| 13 |
|
ovex |
⊢ ( 0 ..^ 𝑁 ) ∈ V |
| 14 |
|
snex |
⊢ { ( 𝐺 ‘ 𝑛 ) } ∈ V |
| 15 |
13 14
|
iunex |
⊢ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ∈ V |
| 16 |
12 15
|
unex |
⊢ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ∈ V |
| 17 |
5 16
|
eqeltri |
⊢ 𝐵 ∈ V |
| 18 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
| 19 |
6 18
|
ressplusg |
⊢ ( 𝐵 ∈ V → ( +g ‘ 𝑀 ) = ( +g ‘ 𝑆 ) ) |
| 20 |
17 19
|
ax-mp |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑆 ) |
| 21 |
20
|
eqcomi |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑀 ) |
| 22 |
21
|
oveqi |
⊢ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) |
| 23 |
1 2 3 4 5 6
|
smndex1bas |
⊢ ( Base ‘ 𝑆 ) = 𝐵 |
| 24 |
1 2 3 4 5
|
smndex1basss |
⊢ 𝐵 ⊆ ( Base ‘ 𝑀 ) |
| 25 |
23 24
|
eqsstri |
⊢ ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑀 ) |
| 26 |
|
ssel |
⊢ ( ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑀 ) → ( 𝑥 ∈ ( Base ‘ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝑀 ) ) ) |
| 27 |
|
ssel |
⊢ ( ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑀 ) → ( 𝑦 ∈ ( Base ‘ 𝑆 ) → 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) |
| 28 |
26 27
|
anim12d |
⊢ ( ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑀 ) → ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) ) |
| 29 |
25 28
|
ax-mp |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) |
| 30 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 31 |
1 30 18
|
efmndov |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
| 32 |
29 31
|
syl |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
| 33 |
22 32
|
eqtrid |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
| 34 |
11 33
|
symggrplem |
⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( +g ‘ 𝑆 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑆 ) ( 𝑏 ( +g ‘ 𝑆 ) 𝑐 ) ) ) |
| 35 |
34
|
rgen3 |
⊢ ∀ 𝑎 ∈ ( Base ‘ 𝑆 ) ∀ 𝑏 ∈ ( Base ‘ 𝑆 ) ∀ 𝑐 ∈ ( Base ‘ 𝑆 ) ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( +g ‘ 𝑆 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑆 ) ( 𝑏 ( +g ‘ 𝑆 ) 𝑐 ) ) |
| 36 |
8 9
|
issgrp |
⊢ ( 𝑆 ∈ Smgrp ↔ ( 𝑆 ∈ Mgm ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑆 ) ∀ 𝑏 ∈ ( Base ‘ 𝑆 ) ∀ 𝑐 ∈ ( Base ‘ 𝑆 ) ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( +g ‘ 𝑆 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑆 ) ( 𝑏 ( +g ‘ 𝑆 ) 𝑐 ) ) ) ) |
| 37 |
7 35 36
|
mpbir2an |
⊢ 𝑆 ∈ Smgrp |