Step |
Hyp |
Ref |
Expression |
1 |
|
smndex2dbas.m |
⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) |
2 |
|
smndex2dbas.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
3 |
|
smndex2dbas.0 |
⊢ 0 = ( 0g ‘ 𝑀 ) |
4 |
|
smndex2dbas.d |
⊢ 𝐷 = ( 𝑥 ∈ ℕ0 ↦ ( 2 · 𝑥 ) ) |
5 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
6 |
5
|
a1i |
⊢ ( 𝑥 ∈ ℕ0 → 2 ∈ ℕ0 ) |
7 |
|
id |
⊢ ( 𝑥 ∈ ℕ0 → 𝑥 ∈ ℕ0 ) |
8 |
6 7
|
nn0mulcld |
⊢ ( 𝑥 ∈ ℕ0 → ( 2 · 𝑥 ) ∈ ℕ0 ) |
9 |
4 8
|
fmpti |
⊢ 𝐷 : ℕ0 ⟶ ℕ0 |
10 |
|
nn0ex |
⊢ ℕ0 ∈ V |
11 |
10
|
mptex |
⊢ ( 𝑥 ∈ ℕ0 ↦ ( 2 · 𝑥 ) ) ∈ V |
12 |
4 11
|
eqeltri |
⊢ 𝐷 ∈ V |
13 |
1 2
|
elefmndbas2 |
⊢ ( 𝐷 ∈ V → ( 𝐷 ∈ 𝐵 ↔ 𝐷 : ℕ0 ⟶ ℕ0 ) ) |
14 |
12 13
|
ax-mp |
⊢ ( 𝐷 ∈ 𝐵 ↔ 𝐷 : ℕ0 ⟶ ℕ0 ) |
15 |
9 14
|
mpbir |
⊢ 𝐷 ∈ 𝐵 |