| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							smndex2dbas.m | 
							⊢ 𝑀  =  ( EndoFMnd ‘ ℕ0 )  | 
						
						
							| 2 | 
							
								
							 | 
							smndex2dbas.b | 
							⊢ 𝐵  =  ( Base ‘ 𝑀 )  | 
						
						
							| 3 | 
							
								
							 | 
							smndex2dbas.0 | 
							⊢  0   =  ( 0g ‘ 𝑀 )  | 
						
						
							| 4 | 
							
								
							 | 
							smndex2dbas.d | 
							⊢ 𝐷  =  ( 𝑥  ∈  ℕ0  ↦  ( 2  ·  𝑥 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							smndex2hbas.n | 
							⊢ 𝑁  ∈  ℕ0  | 
						
						
							| 6 | 
							
								
							 | 
							smndex2hbas.h | 
							⊢ 𝐻  =  ( 𝑥  ∈  ℕ0  ↦  if ( 2  ∥  𝑥 ,  ( 𝑥  /  2 ) ,  𝑁 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							2nn0 | 
							⊢ 2  ∈  ℕ0  | 
						
						
							| 8 | 
							
								
							 | 
							nn0mulcl | 
							⊢ ( ( 2  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( 2  ·  𝑦 )  ∈  ℕ0 )  | 
						
						
							| 9 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑥  =  𝑦  →  ( 2  ·  𝑥 )  =  ( 2  ·  𝑦 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							cbvmptv | 
							⊢ ( 𝑥  ∈  ℕ0  ↦  ( 2  ·  𝑥 ) )  =  ( 𝑦  ∈  ℕ0  ↦  ( 2  ·  𝑦 ) )  | 
						
						
							| 11 | 
							
								4 10
							 | 
							eqtri | 
							⊢ 𝐷  =  ( 𝑦  ∈  ℕ0  ↦  ( 2  ·  𝑦 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							a1i | 
							⊢ ( 2  ∈  ℕ0  →  𝐷  =  ( 𝑦  ∈  ℕ0  ↦  ( 2  ·  𝑦 ) ) )  | 
						
						
							| 13 | 
							
								6
							 | 
							a1i | 
							⊢ ( 2  ∈  ℕ0  →  𝐻  =  ( 𝑥  ∈  ℕ0  ↦  if ( 2  ∥  𝑥 ,  ( 𝑥  /  2 ) ,  𝑁 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑥  =  ( 2  ·  𝑦 )  →  ( 2  ∥  𝑥  ↔  2  ∥  ( 2  ·  𝑦 ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  ( 2  ·  𝑦 )  →  ( 𝑥  /  2 )  =  ( ( 2  ·  𝑦 )  /  2 ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							ifbieq1d | 
							⊢ ( 𝑥  =  ( 2  ·  𝑦 )  →  if ( 2  ∥  𝑥 ,  ( 𝑥  /  2 ) ,  𝑁 )  =  if ( 2  ∥  ( 2  ·  𝑦 ) ,  ( ( 2  ·  𝑦 )  /  2 ) ,  𝑁 ) )  | 
						
						
							| 17 | 
							
								8 12 13 16
							 | 
							fmptco | 
							⊢ ( 2  ∈  ℕ0  →  ( 𝐻  ∘  𝐷 )  =  ( 𝑦  ∈  ℕ0  ↦  if ( 2  ∥  ( 2  ·  𝑦 ) ,  ( ( 2  ·  𝑦 )  /  2 ) ,  𝑁 ) ) )  | 
						
						
							| 18 | 
							
								7 17
							 | 
							ax-mp | 
							⊢ ( 𝐻  ∘  𝐷 )  =  ( 𝑦  ∈  ℕ0  ↦  if ( 2  ∥  ( 2  ·  𝑦 ) ,  ( ( 2  ·  𝑦 )  /  2 ) ,  𝑁 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							nn0z | 
							⊢ ( 𝑦  ∈  ℕ0  →  𝑦  ∈  ℤ )  | 
						
						
							| 20 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝑦  ∈  ℕ0  →  ( 2  ·  𝑦 )  =  ( 2  ·  𝑦 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							2teven | 
							⊢ ( ( 𝑦  ∈  ℤ  ∧  ( 2  ·  𝑦 )  =  ( 2  ·  𝑦 ) )  →  2  ∥  ( 2  ·  𝑦 ) )  | 
						
						
							| 22 | 
							
								19 20 21
							 | 
							syl2anc | 
							⊢ ( 𝑦  ∈  ℕ0  →  2  ∥  ( 2  ·  𝑦 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							iftrued | 
							⊢ ( 𝑦  ∈  ℕ0  →  if ( 2  ∥  ( 2  ·  𝑦 ) ,  ( ( 2  ·  𝑦 )  /  2 ) ,  𝑁 )  =  ( ( 2  ·  𝑦 )  /  2 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							mpteq2ia | 
							⊢ ( 𝑦  ∈  ℕ0  ↦  if ( 2  ∥  ( 2  ·  𝑦 ) ,  ( ( 2  ·  𝑦 )  /  2 ) ,  𝑁 ) )  =  ( 𝑦  ∈  ℕ0  ↦  ( ( 2  ·  𝑦 )  /  2 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							nn0cn | 
							⊢ ( 𝑦  ∈  ℕ0  →  𝑦  ∈  ℂ )  | 
						
						
							| 26 | 
							
								
							 | 
							2cnd | 
							⊢ ( 𝑦  ∈  ℕ0  →  2  ∈  ℂ )  | 
						
						
							| 27 | 
							
								
							 | 
							2ne0 | 
							⊢ 2  ≠  0  | 
						
						
							| 28 | 
							
								27
							 | 
							a1i | 
							⊢ ( 𝑦  ∈  ℕ0  →  2  ≠  0 )  | 
						
						
							| 29 | 
							
								25 26 28
							 | 
							divcan3d | 
							⊢ ( 𝑦  ∈  ℕ0  →  ( ( 2  ·  𝑦 )  /  2 )  =  𝑦 )  | 
						
						
							| 30 | 
							
								29
							 | 
							mpteq2ia | 
							⊢ ( 𝑦  ∈  ℕ0  ↦  ( ( 2  ·  𝑦 )  /  2 ) )  =  ( 𝑦  ∈  ℕ0  ↦  𝑦 )  | 
						
						
							| 31 | 
							
								
							 | 
							nn0ex | 
							⊢ ℕ0  ∈  V  | 
						
						
							| 32 | 
							
								1
							 | 
							efmndid | 
							⊢ ( ℕ0  ∈  V  →  (  I   ↾  ℕ0 )  =  ( 0g ‘ 𝑀 ) )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							ax-mp | 
							⊢ (  I   ↾  ℕ0 )  =  ( 0g ‘ 𝑀 )  | 
						
						
							| 34 | 
							
								
							 | 
							mptresid | 
							⊢ (  I   ↾  ℕ0 )  =  ( 𝑦  ∈  ℕ0  ↦  𝑦 )  | 
						
						
							| 35 | 
							
								3 33 34
							 | 
							3eqtr2ri | 
							⊢ ( 𝑦  ∈  ℕ0  ↦  𝑦 )  =   0   | 
						
						
							| 36 | 
							
								30 35
							 | 
							eqtri | 
							⊢ ( 𝑦  ∈  ℕ0  ↦  ( ( 2  ·  𝑦 )  /  2 ) )  =   0   | 
						
						
							| 37 | 
							
								24 36
							 | 
							eqtri | 
							⊢ ( 𝑦  ∈  ℕ0  ↦  if ( 2  ∥  ( 2  ·  𝑦 ) ,  ( ( 2  ·  𝑦 )  /  2 ) ,  𝑁 ) )  =   0   | 
						
						
							| 38 | 
							
								18 37
							 | 
							eqtri | 
							⊢ ( 𝐻  ∘  𝐷 )  =   0   |