Step |
Hyp |
Ref |
Expression |
1 |
|
smndex2dbas.m |
⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) |
2 |
|
smndex2dbas.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
3 |
|
smndex2dbas.0 |
⊢ 0 = ( 0g ‘ 𝑀 ) |
4 |
|
smndex2dbas.d |
⊢ 𝐷 = ( 𝑥 ∈ ℕ0 ↦ ( 2 · 𝑥 ) ) |
5 |
|
smndex2hbas.n |
⊢ 𝑁 ∈ ℕ0 |
6 |
|
smndex2hbas.h |
⊢ 𝐻 = ( 𝑥 ∈ ℕ0 ↦ if ( 2 ∥ 𝑥 , ( 𝑥 / 2 ) , 𝑁 ) ) |
7 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
8 |
|
nn0mulcl |
⊢ ( ( 2 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 2 · 𝑦 ) ∈ ℕ0 ) |
9 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) |
10 |
9
|
cbvmptv |
⊢ ( 𝑥 ∈ ℕ0 ↦ ( 2 · 𝑥 ) ) = ( 𝑦 ∈ ℕ0 ↦ ( 2 · 𝑦 ) ) |
11 |
4 10
|
eqtri |
⊢ 𝐷 = ( 𝑦 ∈ ℕ0 ↦ ( 2 · 𝑦 ) ) |
12 |
11
|
a1i |
⊢ ( 2 ∈ ℕ0 → 𝐷 = ( 𝑦 ∈ ℕ0 ↦ ( 2 · 𝑦 ) ) ) |
13 |
6
|
a1i |
⊢ ( 2 ∈ ℕ0 → 𝐻 = ( 𝑥 ∈ ℕ0 ↦ if ( 2 ∥ 𝑥 , ( 𝑥 / 2 ) , 𝑁 ) ) ) |
14 |
|
breq2 |
⊢ ( 𝑥 = ( 2 · 𝑦 ) → ( 2 ∥ 𝑥 ↔ 2 ∥ ( 2 · 𝑦 ) ) ) |
15 |
|
oveq1 |
⊢ ( 𝑥 = ( 2 · 𝑦 ) → ( 𝑥 / 2 ) = ( ( 2 · 𝑦 ) / 2 ) ) |
16 |
14 15
|
ifbieq1d |
⊢ ( 𝑥 = ( 2 · 𝑦 ) → if ( 2 ∥ 𝑥 , ( 𝑥 / 2 ) , 𝑁 ) = if ( 2 ∥ ( 2 · 𝑦 ) , ( ( 2 · 𝑦 ) / 2 ) , 𝑁 ) ) |
17 |
8 12 13 16
|
fmptco |
⊢ ( 2 ∈ ℕ0 → ( 𝐻 ∘ 𝐷 ) = ( 𝑦 ∈ ℕ0 ↦ if ( 2 ∥ ( 2 · 𝑦 ) , ( ( 2 · 𝑦 ) / 2 ) , 𝑁 ) ) ) |
18 |
7 17
|
ax-mp |
⊢ ( 𝐻 ∘ 𝐷 ) = ( 𝑦 ∈ ℕ0 ↦ if ( 2 ∥ ( 2 · 𝑦 ) , ( ( 2 · 𝑦 ) / 2 ) , 𝑁 ) ) |
19 |
|
nn0z |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) |
20 |
|
eqidd |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 · 𝑦 ) = ( 2 · 𝑦 ) ) |
21 |
|
2teven |
⊢ ( ( 𝑦 ∈ ℤ ∧ ( 2 · 𝑦 ) = ( 2 · 𝑦 ) ) → 2 ∥ ( 2 · 𝑦 ) ) |
22 |
19 20 21
|
syl2anc |
⊢ ( 𝑦 ∈ ℕ0 → 2 ∥ ( 2 · 𝑦 ) ) |
23 |
22
|
iftrued |
⊢ ( 𝑦 ∈ ℕ0 → if ( 2 ∥ ( 2 · 𝑦 ) , ( ( 2 · 𝑦 ) / 2 ) , 𝑁 ) = ( ( 2 · 𝑦 ) / 2 ) ) |
24 |
23
|
mpteq2ia |
⊢ ( 𝑦 ∈ ℕ0 ↦ if ( 2 ∥ ( 2 · 𝑦 ) , ( ( 2 · 𝑦 ) / 2 ) , 𝑁 ) ) = ( 𝑦 ∈ ℕ0 ↦ ( ( 2 · 𝑦 ) / 2 ) ) |
25 |
|
nn0cn |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℂ ) |
26 |
|
2cnd |
⊢ ( 𝑦 ∈ ℕ0 → 2 ∈ ℂ ) |
27 |
|
2ne0 |
⊢ 2 ≠ 0 |
28 |
27
|
a1i |
⊢ ( 𝑦 ∈ ℕ0 → 2 ≠ 0 ) |
29 |
25 26 28
|
divcan3d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 2 · 𝑦 ) / 2 ) = 𝑦 ) |
30 |
29
|
mpteq2ia |
⊢ ( 𝑦 ∈ ℕ0 ↦ ( ( 2 · 𝑦 ) / 2 ) ) = ( 𝑦 ∈ ℕ0 ↦ 𝑦 ) |
31 |
|
nn0ex |
⊢ ℕ0 ∈ V |
32 |
1
|
efmndid |
⊢ ( ℕ0 ∈ V → ( I ↾ ℕ0 ) = ( 0g ‘ 𝑀 ) ) |
33 |
31 32
|
ax-mp |
⊢ ( I ↾ ℕ0 ) = ( 0g ‘ 𝑀 ) |
34 |
|
mptresid |
⊢ ( I ↾ ℕ0 ) = ( 𝑦 ∈ ℕ0 ↦ 𝑦 ) |
35 |
3 33 34
|
3eqtr2ri |
⊢ ( 𝑦 ∈ ℕ0 ↦ 𝑦 ) = 0 |
36 |
30 35
|
eqtri |
⊢ ( 𝑦 ∈ ℕ0 ↦ ( ( 2 · 𝑦 ) / 2 ) ) = 0 |
37 |
24 36
|
eqtri |
⊢ ( 𝑦 ∈ ℕ0 ↦ if ( 2 ∥ ( 2 · 𝑦 ) , ( ( 2 · 𝑦 ) / 2 ) , 𝑁 ) ) = 0 |
38 |
18 37
|
eqtri |
⊢ ( 𝐻 ∘ 𝐷 ) = 0 |