Step |
Hyp |
Ref |
Expression |
1 |
|
smndex2dbas.m |
⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) |
2 |
|
smndex2dbas.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
3 |
|
smndex2dbas.0 |
⊢ 0 = ( 0g ‘ 𝑀 ) |
4 |
|
smndex2dbas.d |
⊢ 𝐷 = ( 𝑥 ∈ ℕ0 ↦ ( 2 · 𝑥 ) ) |
5 |
|
df-ne |
⊢ ( ( 𝐷 ∘ 𝑓 ) ≠ 0 ↔ ¬ ( 𝐷 ∘ 𝑓 ) = 0 ) |
6 |
5
|
ralbii |
⊢ ( ∀ 𝑓 ∈ 𝐵 ( 𝐷 ∘ 𝑓 ) ≠ 0 ↔ ∀ 𝑓 ∈ 𝐵 ¬ ( 𝐷 ∘ 𝑓 ) = 0 ) |
7 |
1 2
|
efmndbasf |
⊢ ( 𝑓 ∈ 𝐵 → 𝑓 : ℕ0 ⟶ ℕ0 ) |
8 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
9 |
|
nn0z |
⊢ ( 𝑥 ∈ ℕ0 → 𝑥 ∈ ℤ ) |
10 |
|
0zd |
⊢ ( 𝑥 ∈ ℕ0 → 0 ∈ ℤ ) |
11 |
|
zneo |
⊢ ( ( 𝑥 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 2 · 𝑥 ) ≠ ( ( 2 · 0 ) + 1 ) ) |
12 |
9 10 11
|
syl2anc |
⊢ ( 𝑥 ∈ ℕ0 → ( 2 · 𝑥 ) ≠ ( ( 2 · 0 ) + 1 ) ) |
13 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
14 |
13
|
oveq1i |
⊢ ( ( 2 · 0 ) + 1 ) = ( 0 + 1 ) |
15 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
16 |
14 15
|
eqtri |
⊢ ( ( 2 · 0 ) + 1 ) = 1 |
17 |
16
|
a1i |
⊢ ( 𝑥 ∈ ℕ0 → ( ( 2 · 0 ) + 1 ) = 1 ) |
18 |
12 17
|
neeqtrd |
⊢ ( 𝑥 ∈ ℕ0 → ( 2 · 𝑥 ) ≠ 1 ) |
19 |
18
|
necomd |
⊢ ( 𝑥 ∈ ℕ0 → 1 ≠ ( 2 · 𝑥 ) ) |
20 |
19
|
neneqd |
⊢ ( 𝑥 ∈ ℕ0 → ¬ 1 = ( 2 · 𝑥 ) ) |
21 |
20
|
nrex |
⊢ ¬ ∃ 𝑥 ∈ ℕ0 1 = ( 2 · 𝑥 ) |
22 |
|
1ex |
⊢ 1 ∈ V |
23 |
|
eqeq1 |
⊢ ( 𝑦 = 1 → ( 𝑦 = ( 2 · 𝑥 ) ↔ 1 = ( 2 · 𝑥 ) ) ) |
24 |
23
|
rexbidv |
⊢ ( 𝑦 = 1 → ( ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) ↔ ∃ 𝑥 ∈ ℕ0 1 = ( 2 · 𝑥 ) ) ) |
25 |
22 24
|
elab |
⊢ ( 1 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } ↔ ∃ 𝑥 ∈ ℕ0 1 = ( 2 · 𝑥 ) ) |
26 |
21 25
|
mtbir |
⊢ ¬ 1 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } |
27 |
|
nelss |
⊢ ( ( 1 ∈ ℕ0 ∧ ¬ 1 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } ) → ¬ ℕ0 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } ) |
28 |
8 26 27
|
mp2an |
⊢ ¬ ℕ0 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } |
29 |
28
|
intnan |
⊢ ¬ ( { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } ⊆ ℕ0 ∧ ℕ0 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } ) |
30 |
|
eqss |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } = ℕ0 ↔ ( { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } ⊆ ℕ0 ∧ ℕ0 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } ) ) |
31 |
29 30
|
mtbir |
⊢ ¬ { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } = ℕ0 |
32 |
4
|
rnmpt |
⊢ ran 𝐷 = { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } |
33 |
32
|
eqeq1i |
⊢ ( ran 𝐷 = ℕ0 ↔ { 𝑦 ∣ ∃ 𝑥 ∈ ℕ0 𝑦 = ( 2 · 𝑥 ) } = ℕ0 ) |
34 |
31 33
|
mtbir |
⊢ ¬ ran 𝐷 = ℕ0 |
35 |
34
|
olci |
⊢ ( ¬ 𝐷 Fn ℕ0 ∨ ¬ ran 𝐷 = ℕ0 ) |
36 |
|
ianor |
⊢ ( ¬ ( 𝐷 Fn ℕ0 ∧ ran 𝐷 = ℕ0 ) ↔ ( ¬ 𝐷 Fn ℕ0 ∨ ¬ ran 𝐷 = ℕ0 ) ) |
37 |
|
df-fo |
⊢ ( 𝐷 : ℕ0 –onto→ ℕ0 ↔ ( 𝐷 Fn ℕ0 ∧ ran 𝐷 = ℕ0 ) ) |
38 |
36 37
|
xchnxbir |
⊢ ( ¬ 𝐷 : ℕ0 –onto→ ℕ0 ↔ ( ¬ 𝐷 Fn ℕ0 ∨ ¬ ran 𝐷 = ℕ0 ) ) |
39 |
35 38
|
mpbir |
⊢ ¬ 𝐷 : ℕ0 –onto→ ℕ0 |
40 |
39
|
a1i |
⊢ ( 𝑓 : ℕ0 ⟶ ℕ0 → ¬ 𝐷 : ℕ0 –onto→ ℕ0 ) |
41 |
1 2 3 4
|
smndex2dbas |
⊢ 𝐷 ∈ 𝐵 |
42 |
1 2
|
efmndbasf |
⊢ ( 𝐷 ∈ 𝐵 → 𝐷 : ℕ0 ⟶ ℕ0 ) |
43 |
|
simpl |
⊢ ( ( 𝐷 : ℕ0 ⟶ ℕ0 ∧ ( 𝑓 : ℕ0 ⟶ ℕ0 ∧ ( 𝐷 ∘ 𝑓 ) = 0 ) ) → 𝐷 : ℕ0 ⟶ ℕ0 ) |
44 |
|
simpl |
⊢ ( ( 𝑓 : ℕ0 ⟶ ℕ0 ∧ ( 𝐷 ∘ 𝑓 ) = 0 ) → 𝑓 : ℕ0 ⟶ ℕ0 ) |
45 |
44
|
adantl |
⊢ ( ( 𝐷 : ℕ0 ⟶ ℕ0 ∧ ( 𝑓 : ℕ0 ⟶ ℕ0 ∧ ( 𝐷 ∘ 𝑓 ) = 0 ) ) → 𝑓 : ℕ0 ⟶ ℕ0 ) |
46 |
|
nn0ex |
⊢ ℕ0 ∈ V |
47 |
1
|
efmndid |
⊢ ( ℕ0 ∈ V → ( I ↾ ℕ0 ) = ( 0g ‘ 𝑀 ) ) |
48 |
46 47
|
ax-mp |
⊢ ( I ↾ ℕ0 ) = ( 0g ‘ 𝑀 ) |
49 |
3 48
|
eqtr4i |
⊢ 0 = ( I ↾ ℕ0 ) |
50 |
49
|
eqeq2i |
⊢ ( ( 𝐷 ∘ 𝑓 ) = 0 ↔ ( 𝐷 ∘ 𝑓 ) = ( I ↾ ℕ0 ) ) |
51 |
50
|
biimpi |
⊢ ( ( 𝐷 ∘ 𝑓 ) = 0 → ( 𝐷 ∘ 𝑓 ) = ( I ↾ ℕ0 ) ) |
52 |
51
|
adantl |
⊢ ( ( 𝑓 : ℕ0 ⟶ ℕ0 ∧ ( 𝐷 ∘ 𝑓 ) = 0 ) → ( 𝐷 ∘ 𝑓 ) = ( I ↾ ℕ0 ) ) |
53 |
52
|
adantl |
⊢ ( ( 𝐷 : ℕ0 ⟶ ℕ0 ∧ ( 𝑓 : ℕ0 ⟶ ℕ0 ∧ ( 𝐷 ∘ 𝑓 ) = 0 ) ) → ( 𝐷 ∘ 𝑓 ) = ( I ↾ ℕ0 ) ) |
54 |
|
fcofo |
⊢ ( ( 𝐷 : ℕ0 ⟶ ℕ0 ∧ 𝑓 : ℕ0 ⟶ ℕ0 ∧ ( 𝐷 ∘ 𝑓 ) = ( I ↾ ℕ0 ) ) → 𝐷 : ℕ0 –onto→ ℕ0 ) |
55 |
43 45 53 54
|
syl3anc |
⊢ ( ( 𝐷 : ℕ0 ⟶ ℕ0 ∧ ( 𝑓 : ℕ0 ⟶ ℕ0 ∧ ( 𝐷 ∘ 𝑓 ) = 0 ) ) → 𝐷 : ℕ0 –onto→ ℕ0 ) |
56 |
55
|
ex |
⊢ ( 𝐷 : ℕ0 ⟶ ℕ0 → ( ( 𝑓 : ℕ0 ⟶ ℕ0 ∧ ( 𝐷 ∘ 𝑓 ) = 0 ) → 𝐷 : ℕ0 –onto→ ℕ0 ) ) |
57 |
41 42 56
|
mp2b |
⊢ ( ( 𝑓 : ℕ0 ⟶ ℕ0 ∧ ( 𝐷 ∘ 𝑓 ) = 0 ) → 𝐷 : ℕ0 –onto→ ℕ0 ) |
58 |
40 57
|
mtand |
⊢ ( 𝑓 : ℕ0 ⟶ ℕ0 → ¬ ( 𝐷 ∘ 𝑓 ) = 0 ) |
59 |
7 58
|
syl |
⊢ ( 𝑓 ∈ 𝐵 → ¬ ( 𝐷 ∘ 𝑓 ) = 0 ) |
60 |
6 59
|
mprgbir |
⊢ ∀ 𝑓 ∈ 𝐵 ( 𝐷 ∘ 𝑓 ) ≠ 0 |