| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smndex2dbas.m | ⊢ 𝑀  =  ( EndoFMnd ‘ ℕ0 ) | 
						
							| 2 |  | smndex2dbas.b | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 3 |  | smndex2dbas.0 | ⊢  0   =  ( 0g ‘ 𝑀 ) | 
						
							| 4 |  | smndex2dbas.d | ⊢ 𝐷  =  ( 𝑥  ∈  ℕ0  ↦  ( 2  ·  𝑥 ) ) | 
						
							| 5 |  | df-ne | ⊢ ( ( 𝐷  ∘  𝑓 )  ≠   0   ↔  ¬  ( 𝐷  ∘  𝑓 )  =   0  ) | 
						
							| 6 | 5 | ralbii | ⊢ ( ∀ 𝑓  ∈  𝐵 ( 𝐷  ∘  𝑓 )  ≠   0   ↔  ∀ 𝑓  ∈  𝐵 ¬  ( 𝐷  ∘  𝑓 )  =   0  ) | 
						
							| 7 | 1 2 | efmndbasf | ⊢ ( 𝑓  ∈  𝐵  →  𝑓 : ℕ0 ⟶ ℕ0 ) | 
						
							| 8 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 9 |  | nn0z | ⊢ ( 𝑥  ∈  ℕ0  →  𝑥  ∈  ℤ ) | 
						
							| 10 |  | 0zd | ⊢ ( 𝑥  ∈  ℕ0  →  0  ∈  ℤ ) | 
						
							| 11 |  | zneo | ⊢ ( ( 𝑥  ∈  ℤ  ∧  0  ∈  ℤ )  →  ( 2  ·  𝑥 )  ≠  ( ( 2  ·  0 )  +  1 ) ) | 
						
							| 12 | 9 10 11 | syl2anc | ⊢ ( 𝑥  ∈  ℕ0  →  ( 2  ·  𝑥 )  ≠  ( ( 2  ·  0 )  +  1 ) ) | 
						
							| 13 |  | 2t0e0 | ⊢ ( 2  ·  0 )  =  0 | 
						
							| 14 | 13 | oveq1i | ⊢ ( ( 2  ·  0 )  +  1 )  =  ( 0  +  1 ) | 
						
							| 15 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 16 | 14 15 | eqtri | ⊢ ( ( 2  ·  0 )  +  1 )  =  1 | 
						
							| 17 | 16 | a1i | ⊢ ( 𝑥  ∈  ℕ0  →  ( ( 2  ·  0 )  +  1 )  =  1 ) | 
						
							| 18 | 12 17 | neeqtrd | ⊢ ( 𝑥  ∈  ℕ0  →  ( 2  ·  𝑥 )  ≠  1 ) | 
						
							| 19 | 18 | necomd | ⊢ ( 𝑥  ∈  ℕ0  →  1  ≠  ( 2  ·  𝑥 ) ) | 
						
							| 20 | 19 | neneqd | ⊢ ( 𝑥  ∈  ℕ0  →  ¬  1  =  ( 2  ·  𝑥 ) ) | 
						
							| 21 | 20 | nrex | ⊢ ¬  ∃ 𝑥  ∈  ℕ0 1  =  ( 2  ·  𝑥 ) | 
						
							| 22 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 23 |  | eqeq1 | ⊢ ( 𝑦  =  1  →  ( 𝑦  =  ( 2  ·  𝑥 )  ↔  1  =  ( 2  ·  𝑥 ) ) ) | 
						
							| 24 | 23 | rexbidv | ⊢ ( 𝑦  =  1  →  ( ∃ 𝑥  ∈  ℕ0 𝑦  =  ( 2  ·  𝑥 )  ↔  ∃ 𝑥  ∈  ℕ0 1  =  ( 2  ·  𝑥 ) ) ) | 
						
							| 25 | 22 24 | elab | ⊢ ( 1  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  ℕ0 𝑦  =  ( 2  ·  𝑥 ) }  ↔  ∃ 𝑥  ∈  ℕ0 1  =  ( 2  ·  𝑥 ) ) | 
						
							| 26 | 21 25 | mtbir | ⊢ ¬  1  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  ℕ0 𝑦  =  ( 2  ·  𝑥 ) } | 
						
							| 27 |  | nelss | ⊢ ( ( 1  ∈  ℕ0  ∧  ¬  1  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  ℕ0 𝑦  =  ( 2  ·  𝑥 ) } )  →  ¬  ℕ0  ⊆  { 𝑦  ∣  ∃ 𝑥  ∈  ℕ0 𝑦  =  ( 2  ·  𝑥 ) } ) | 
						
							| 28 | 8 26 27 | mp2an | ⊢ ¬  ℕ0  ⊆  { 𝑦  ∣  ∃ 𝑥  ∈  ℕ0 𝑦  =  ( 2  ·  𝑥 ) } | 
						
							| 29 | 28 | intnan | ⊢ ¬  ( { 𝑦  ∣  ∃ 𝑥  ∈  ℕ0 𝑦  =  ( 2  ·  𝑥 ) }  ⊆  ℕ0  ∧  ℕ0  ⊆  { 𝑦  ∣  ∃ 𝑥  ∈  ℕ0 𝑦  =  ( 2  ·  𝑥 ) } ) | 
						
							| 30 |  | eqss | ⊢ ( { 𝑦  ∣  ∃ 𝑥  ∈  ℕ0 𝑦  =  ( 2  ·  𝑥 ) }  =  ℕ0  ↔  ( { 𝑦  ∣  ∃ 𝑥  ∈  ℕ0 𝑦  =  ( 2  ·  𝑥 ) }  ⊆  ℕ0  ∧  ℕ0  ⊆  { 𝑦  ∣  ∃ 𝑥  ∈  ℕ0 𝑦  =  ( 2  ·  𝑥 ) } ) ) | 
						
							| 31 | 29 30 | mtbir | ⊢ ¬  { 𝑦  ∣  ∃ 𝑥  ∈  ℕ0 𝑦  =  ( 2  ·  𝑥 ) }  =  ℕ0 | 
						
							| 32 | 4 | rnmpt | ⊢ ran  𝐷  =  { 𝑦  ∣  ∃ 𝑥  ∈  ℕ0 𝑦  =  ( 2  ·  𝑥 ) } | 
						
							| 33 | 32 | eqeq1i | ⊢ ( ran  𝐷  =  ℕ0  ↔  { 𝑦  ∣  ∃ 𝑥  ∈  ℕ0 𝑦  =  ( 2  ·  𝑥 ) }  =  ℕ0 ) | 
						
							| 34 | 31 33 | mtbir | ⊢ ¬  ran  𝐷  =  ℕ0 | 
						
							| 35 | 34 | olci | ⊢ ( ¬  𝐷  Fn  ℕ0  ∨  ¬  ran  𝐷  =  ℕ0 ) | 
						
							| 36 |  | ianor | ⊢ ( ¬  ( 𝐷  Fn  ℕ0  ∧  ran  𝐷  =  ℕ0 )  ↔  ( ¬  𝐷  Fn  ℕ0  ∨  ¬  ran  𝐷  =  ℕ0 ) ) | 
						
							| 37 |  | df-fo | ⊢ ( 𝐷 : ℕ0 –onto→ ℕ0  ↔  ( 𝐷  Fn  ℕ0  ∧  ran  𝐷  =  ℕ0 ) ) | 
						
							| 38 | 36 37 | xchnxbir | ⊢ ( ¬  𝐷 : ℕ0 –onto→ ℕ0  ↔  ( ¬  𝐷  Fn  ℕ0  ∨  ¬  ran  𝐷  =  ℕ0 ) ) | 
						
							| 39 | 35 38 | mpbir | ⊢ ¬  𝐷 : ℕ0 –onto→ ℕ0 | 
						
							| 40 | 39 | a1i | ⊢ ( 𝑓 : ℕ0 ⟶ ℕ0  →  ¬  𝐷 : ℕ0 –onto→ ℕ0 ) | 
						
							| 41 | 1 2 3 4 | smndex2dbas | ⊢ 𝐷  ∈  𝐵 | 
						
							| 42 | 1 2 | efmndbasf | ⊢ ( 𝐷  ∈  𝐵  →  𝐷 : ℕ0 ⟶ ℕ0 ) | 
						
							| 43 |  | simpl | ⊢ ( ( 𝐷 : ℕ0 ⟶ ℕ0  ∧  ( 𝑓 : ℕ0 ⟶ ℕ0  ∧  ( 𝐷  ∘  𝑓 )  =   0  ) )  →  𝐷 : ℕ0 ⟶ ℕ0 ) | 
						
							| 44 |  | simpl | ⊢ ( ( 𝑓 : ℕ0 ⟶ ℕ0  ∧  ( 𝐷  ∘  𝑓 )  =   0  )  →  𝑓 : ℕ0 ⟶ ℕ0 ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( 𝐷 : ℕ0 ⟶ ℕ0  ∧  ( 𝑓 : ℕ0 ⟶ ℕ0  ∧  ( 𝐷  ∘  𝑓 )  =   0  ) )  →  𝑓 : ℕ0 ⟶ ℕ0 ) | 
						
							| 46 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 47 | 1 | efmndid | ⊢ ( ℕ0  ∈  V  →  (  I   ↾  ℕ0 )  =  ( 0g ‘ 𝑀 ) ) | 
						
							| 48 | 46 47 | ax-mp | ⊢ (  I   ↾  ℕ0 )  =  ( 0g ‘ 𝑀 ) | 
						
							| 49 | 3 48 | eqtr4i | ⊢  0   =  (  I   ↾  ℕ0 ) | 
						
							| 50 | 49 | eqeq2i | ⊢ ( ( 𝐷  ∘  𝑓 )  =   0   ↔  ( 𝐷  ∘  𝑓 )  =  (  I   ↾  ℕ0 ) ) | 
						
							| 51 | 50 | biimpi | ⊢ ( ( 𝐷  ∘  𝑓 )  =   0   →  ( 𝐷  ∘  𝑓 )  =  (  I   ↾  ℕ0 ) ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( 𝑓 : ℕ0 ⟶ ℕ0  ∧  ( 𝐷  ∘  𝑓 )  =   0  )  →  ( 𝐷  ∘  𝑓 )  =  (  I   ↾  ℕ0 ) ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( 𝐷 : ℕ0 ⟶ ℕ0  ∧  ( 𝑓 : ℕ0 ⟶ ℕ0  ∧  ( 𝐷  ∘  𝑓 )  =   0  ) )  →  ( 𝐷  ∘  𝑓 )  =  (  I   ↾  ℕ0 ) ) | 
						
							| 54 |  | fcofo | ⊢ ( ( 𝐷 : ℕ0 ⟶ ℕ0  ∧  𝑓 : ℕ0 ⟶ ℕ0  ∧  ( 𝐷  ∘  𝑓 )  =  (  I   ↾  ℕ0 ) )  →  𝐷 : ℕ0 –onto→ ℕ0 ) | 
						
							| 55 | 43 45 53 54 | syl3anc | ⊢ ( ( 𝐷 : ℕ0 ⟶ ℕ0  ∧  ( 𝑓 : ℕ0 ⟶ ℕ0  ∧  ( 𝐷  ∘  𝑓 )  =   0  ) )  →  𝐷 : ℕ0 –onto→ ℕ0 ) | 
						
							| 56 | 55 | ex | ⊢ ( 𝐷 : ℕ0 ⟶ ℕ0  →  ( ( 𝑓 : ℕ0 ⟶ ℕ0  ∧  ( 𝐷  ∘  𝑓 )  =   0  )  →  𝐷 : ℕ0 –onto→ ℕ0 ) ) | 
						
							| 57 | 41 42 56 | mp2b | ⊢ ( ( 𝑓 : ℕ0 ⟶ ℕ0  ∧  ( 𝐷  ∘  𝑓 )  =   0  )  →  𝐷 : ℕ0 –onto→ ℕ0 ) | 
						
							| 58 | 40 57 | mtand | ⊢ ( 𝑓 : ℕ0 ⟶ ℕ0  →  ¬  ( 𝐷  ∘  𝑓 )  =   0  ) | 
						
							| 59 | 7 58 | syl | ⊢ ( 𝑓  ∈  𝐵  →  ¬  ( 𝐷  ∘  𝑓 )  =   0  ) | 
						
							| 60 | 6 59 | mprgbir | ⊢ ∀ 𝑓  ∈  𝐵 ( 𝐷  ∘  𝑓 )  ≠   0 |