Step |
Hyp |
Ref |
Expression |
1 |
|
smndex2dbas.m |
⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) |
2 |
|
smndex2dbas.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
3 |
|
smndex2dbas.0 |
⊢ 0 = ( 0g ‘ 𝑀 ) |
4 |
|
smndex2dbas.d |
⊢ 𝐷 = ( 𝑥 ∈ ℕ0 ↦ ( 2 · 𝑥 ) ) |
5 |
|
smndex2hbas.n |
⊢ 𝑁 ∈ ℕ0 |
6 |
|
smndex2hbas.h |
⊢ 𝐻 = ( 𝑥 ∈ ℕ0 ↦ if ( 2 ∥ 𝑥 , ( 𝑥 / 2 ) , 𝑁 ) ) |
7 |
|
nn0ehalf |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 2 ∥ 𝑥 ) → ( 𝑥 / 2 ) ∈ ℕ0 ) |
8 |
5
|
a1i |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑥 ) → 𝑁 ∈ ℕ0 ) |
9 |
7 8
|
ifclda |
⊢ ( 𝑥 ∈ ℕ0 → if ( 2 ∥ 𝑥 , ( 𝑥 / 2 ) , 𝑁 ) ∈ ℕ0 ) |
10 |
6 9
|
fmpti |
⊢ 𝐻 : ℕ0 ⟶ ℕ0 |
11 |
|
nn0ex |
⊢ ℕ0 ∈ V |
12 |
11
|
mptex |
⊢ ( 𝑥 ∈ ℕ0 ↦ if ( 2 ∥ 𝑥 , ( 𝑥 / 2 ) , 𝑁 ) ) ∈ V |
13 |
6 12
|
eqeltri |
⊢ 𝐻 ∈ V |
14 |
1 2
|
elefmndbas2 |
⊢ ( 𝐻 ∈ V → ( 𝐻 ∈ 𝐵 ↔ 𝐻 : ℕ0 ⟶ ℕ0 ) ) |
15 |
13 14
|
ax-mp |
⊢ ( 𝐻 ∈ 𝐵 ↔ 𝐻 : ℕ0 ⟶ ℕ0 ) |
16 |
10 15
|
mpbir |
⊢ 𝐻 ∈ 𝐵 |