| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smndex2dbas.m | ⊢ 𝑀  =  ( EndoFMnd ‘ ℕ0 ) | 
						
							| 2 |  | smndex2dbas.b | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 3 |  | smndex2dbas.0 | ⊢  0   =  ( 0g ‘ 𝑀 ) | 
						
							| 4 |  | smndex2dbas.d | ⊢ 𝐷  =  ( 𝑥  ∈  ℕ0  ↦  ( 2  ·  𝑥 ) ) | 
						
							| 5 |  | smndex2hbas.n | ⊢ 𝑁  ∈  ℕ0 | 
						
							| 6 |  | smndex2hbas.h | ⊢ 𝐻  =  ( 𝑥  ∈  ℕ0  ↦  if ( 2  ∥  𝑥 ,  ( 𝑥  /  2 ) ,  𝑁 ) ) | 
						
							| 7 |  | nn0ehalf | ⊢ ( ( 𝑥  ∈  ℕ0  ∧  2  ∥  𝑥 )  →  ( 𝑥  /  2 )  ∈  ℕ0 ) | 
						
							| 8 | 5 | a1i | ⊢ ( ( 𝑥  ∈  ℕ0  ∧  ¬  2  ∥  𝑥 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 9 | 7 8 | ifclda | ⊢ ( 𝑥  ∈  ℕ0  →  if ( 2  ∥  𝑥 ,  ( 𝑥  /  2 ) ,  𝑁 )  ∈  ℕ0 ) | 
						
							| 10 | 6 9 | fmpti | ⊢ 𝐻 : ℕ0 ⟶ ℕ0 | 
						
							| 11 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 12 | 11 | mptex | ⊢ ( 𝑥  ∈  ℕ0  ↦  if ( 2  ∥  𝑥 ,  ( 𝑥  /  2 ) ,  𝑁 ) )  ∈  V | 
						
							| 13 | 6 12 | eqeltri | ⊢ 𝐻  ∈  V | 
						
							| 14 | 1 2 | elefmndbas2 | ⊢ ( 𝐻  ∈  V  →  ( 𝐻  ∈  𝐵  ↔  𝐻 : ℕ0 ⟶ ℕ0 ) ) | 
						
							| 15 | 13 14 | ax-mp | ⊢ ( 𝐻  ∈  𝐵  ↔  𝐻 : ℕ0 ⟶ ℕ0 ) | 
						
							| 16 | 10 15 | mpbir | ⊢ 𝐻  ∈  𝐵 |