Metamath Proof Explorer


Theorem smo0

Description: The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011)

Ref Expression
Assertion smo0 Smo ∅

Proof

Step Hyp Ref Expression
1 ord0 Ord ∅
2 1 iordsmo Smo ( I ↾ ∅ )
3 res0 ( I ↾ ∅ ) = ∅
4 smoeq ( ( I ↾ ∅ ) = ∅ → ( Smo ( I ↾ ∅ ) ↔ Smo ∅ ) )
5 3 4 ax-mp ( Smo ( I ↾ ∅ ) ↔ Smo ∅ )
6 2 5 mpbi Smo ∅