Metamath Proof Explorer
Description: The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011)
|
|
Ref |
Expression |
|
Assertion |
smo0 |
⊢ Smo ∅ |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ord0 |
⊢ Ord ∅ |
2 |
1
|
iordsmo |
⊢ Smo ( I ↾ ∅ ) |
3 |
|
res0 |
⊢ ( I ↾ ∅ ) = ∅ |
4 |
|
smoeq |
⊢ ( ( I ↾ ∅ ) = ∅ → ( Smo ( I ↾ ∅ ) ↔ Smo ∅ ) ) |
5 |
3 4
|
ax-mp |
⊢ ( Smo ( I ↾ ∅ ) ↔ Smo ∅ ) |
6 |
2 5
|
mpbi |
⊢ Smo ∅ |