Metamath Proof Explorer


Theorem smo11

Description: A strictly monotone ordinal function is one-to-one. (Contributed by Mario Carneiro, 28-Feb-2013)

Ref Expression
Assertion smo11 ( ( 𝐹 : 𝐴𝐵 ∧ Smo 𝐹 ) → 𝐹 : 𝐴1-1𝐵 )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐹 : 𝐴𝐵 ∧ Smo 𝐹 ) → 𝐹 : 𝐴𝐵 )
2 ffn ( 𝐹 : 𝐴𝐵𝐹 Fn 𝐴 )
3 smodm2 ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → Ord 𝐴 )
4 ordelord ( ( Ord 𝐴𝑧𝐴 ) → Ord 𝑧 )
5 4 ex ( Ord 𝐴 → ( 𝑧𝐴 → Ord 𝑧 ) )
6 3 5 syl ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → ( 𝑧𝐴 → Ord 𝑧 ) )
7 ordelord ( ( Ord 𝐴𝑤𝐴 ) → Ord 𝑤 )
8 7 ex ( Ord 𝐴 → ( 𝑤𝐴 → Ord 𝑤 ) )
9 3 8 syl ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → ( 𝑤𝐴 → Ord 𝑤 ) )
10 6 9 anim12d ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → ( ( 𝑧𝐴𝑤𝐴 ) → ( Ord 𝑧 ∧ Ord 𝑤 ) ) )
11 ordtri3or ( ( Ord 𝑧 ∧ Ord 𝑤 ) → ( 𝑧𝑤𝑧 = 𝑤𝑤𝑧 ) )
12 simp1rr ( ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑧𝐴𝑤𝐴 ) ) ∧ 𝑧𝑤 ∧ ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ) → 𝑤𝐴 )
13 smoel2 ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑥𝐴𝑦𝑥 ) ) → ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) )
14 13 ralrimivva ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → ∀ 𝑥𝐴𝑦𝑥 ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) )
15 14 adantr ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑧𝐴𝑤𝐴 ) ) → ∀ 𝑥𝐴𝑦𝑥 ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) )
16 15 3ad2ant1 ( ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑧𝐴𝑤𝐴 ) ) ∧ 𝑧𝑤 ∧ ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ) → ∀ 𝑥𝐴𝑦𝑥 ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) )
17 simp2 ( ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑧𝐴𝑤𝐴 ) ) ∧ 𝑧𝑤 ∧ ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ) → 𝑧𝑤 )
18 simp3 ( ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑧𝐴𝑤𝐴 ) ) ∧ 𝑧𝑤 ∧ ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ) → ( 𝐹𝑧 ) = ( 𝐹𝑤 ) )
19 fveq2 ( 𝑥 = 𝑤 → ( 𝐹𝑥 ) = ( 𝐹𝑤 ) )
20 19 eleq2d ( 𝑥 = 𝑤 → ( ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) ↔ ( 𝐹𝑦 ) ∈ ( 𝐹𝑤 ) ) )
21 20 raleqbi1dv ( 𝑥 = 𝑤 → ( ∀ 𝑦𝑥 ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) ↔ ∀ 𝑦𝑤 ( 𝐹𝑦 ) ∈ ( 𝐹𝑤 ) ) )
22 21 rspcv ( 𝑤𝐴 → ( ∀ 𝑥𝐴𝑦𝑥 ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) → ∀ 𝑦𝑤 ( 𝐹𝑦 ) ∈ ( 𝐹𝑤 ) ) )
23 fveq2 ( 𝑦 = 𝑧 → ( 𝐹𝑦 ) = ( 𝐹𝑧 ) )
24 23 eleq1d ( 𝑦 = 𝑧 → ( ( 𝐹𝑦 ) ∈ ( 𝐹𝑤 ) ↔ ( 𝐹𝑧 ) ∈ ( 𝐹𝑤 ) ) )
25 24 rspccv ( ∀ 𝑦𝑤 ( 𝐹𝑦 ) ∈ ( 𝐹𝑤 ) → ( 𝑧𝑤 → ( 𝐹𝑧 ) ∈ ( 𝐹𝑤 ) ) )
26 22 25 syl6 ( 𝑤𝐴 → ( ∀ 𝑥𝐴𝑦𝑥 ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) → ( 𝑧𝑤 → ( 𝐹𝑧 ) ∈ ( 𝐹𝑤 ) ) ) )
27 26 3imp ( ( 𝑤𝐴 ∧ ∀ 𝑥𝐴𝑦𝑥 ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) ∧ 𝑧𝑤 ) → ( 𝐹𝑧 ) ∈ ( 𝐹𝑤 ) )
28 eleq1 ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → ( ( 𝐹𝑧 ) ∈ ( 𝐹𝑤 ) ↔ ( 𝐹𝑤 ) ∈ ( 𝐹𝑤 ) ) )
29 28 biimpac ( ( ( 𝐹𝑧 ) ∈ ( 𝐹𝑤 ) ∧ ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ) → ( 𝐹𝑤 ) ∈ ( 𝐹𝑤 ) )
30 27 29 sylan ( ( ( 𝑤𝐴 ∧ ∀ 𝑥𝐴𝑦𝑥 ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) ∧ 𝑧𝑤 ) ∧ ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ) → ( 𝐹𝑤 ) ∈ ( 𝐹𝑤 ) )
31 12 16 17 18 30 syl31anc ( ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑧𝐴𝑤𝐴 ) ) ∧ 𝑧𝑤 ∧ ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ) → ( 𝐹𝑤 ) ∈ ( 𝐹𝑤 ) )
32 smofvon2 ( Smo 𝐹 → ( 𝐹𝑤 ) ∈ On )
33 eloni ( ( 𝐹𝑤 ) ∈ On → Ord ( 𝐹𝑤 ) )
34 ordirr ( Ord ( 𝐹𝑤 ) → ¬ ( 𝐹𝑤 ) ∈ ( 𝐹𝑤 ) )
35 32 33 34 3syl ( Smo 𝐹 → ¬ ( 𝐹𝑤 ) ∈ ( 𝐹𝑤 ) )
36 35 ad2antlr ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑧𝐴𝑤𝐴 ) ) → ¬ ( 𝐹𝑤 ) ∈ ( 𝐹𝑤 ) )
37 36 3ad2ant1 ( ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑧𝐴𝑤𝐴 ) ) ∧ 𝑧𝑤 ∧ ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ) → ¬ ( 𝐹𝑤 ) ∈ ( 𝐹𝑤 ) )
38 31 37 pm2.21dd ( ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑧𝐴𝑤𝐴 ) ) ∧ 𝑧𝑤 ∧ ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ) → 𝑧 = 𝑤 )
39 38 3exp ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑧𝐴𝑤𝐴 ) ) → ( 𝑧𝑤 → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) ) )
40 ax-1 ( 𝑧 = 𝑤 → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) )
41 40 a1i ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑧𝐴𝑤𝐴 ) ) → ( 𝑧 = 𝑤 → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) ) )
42 simp1rl ( ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑧𝐴𝑤𝐴 ) ) ∧ 𝑤𝑧 ∧ ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ) → 𝑧𝐴 )
43 15 3ad2ant1 ( ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑧𝐴𝑤𝐴 ) ) ∧ 𝑤𝑧 ∧ ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ) → ∀ 𝑥𝐴𝑦𝑥 ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) )
44 simp2 ( ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑧𝐴𝑤𝐴 ) ) ∧ 𝑤𝑧 ∧ ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ) → 𝑤𝑧 )
45 simp3 ( ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑧𝐴𝑤𝐴 ) ) ∧ 𝑤𝑧 ∧ ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ) → ( 𝐹𝑧 ) = ( 𝐹𝑤 ) )
46 fveq2 ( 𝑥 = 𝑧 → ( 𝐹𝑥 ) = ( 𝐹𝑧 ) )
47 46 eleq2d ( 𝑥 = 𝑧 → ( ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) ↔ ( 𝐹𝑦 ) ∈ ( 𝐹𝑧 ) ) )
48 47 raleqbi1dv ( 𝑥 = 𝑧 → ( ∀ 𝑦𝑥 ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) ↔ ∀ 𝑦𝑧 ( 𝐹𝑦 ) ∈ ( 𝐹𝑧 ) ) )
49 48 rspcv ( 𝑧𝐴 → ( ∀ 𝑥𝐴𝑦𝑥 ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) → ∀ 𝑦𝑧 ( 𝐹𝑦 ) ∈ ( 𝐹𝑧 ) ) )
50 fveq2 ( 𝑦 = 𝑤 → ( 𝐹𝑦 ) = ( 𝐹𝑤 ) )
51 50 eleq1d ( 𝑦 = 𝑤 → ( ( 𝐹𝑦 ) ∈ ( 𝐹𝑧 ) ↔ ( 𝐹𝑤 ) ∈ ( 𝐹𝑧 ) ) )
52 51 rspccv ( ∀ 𝑦𝑧 ( 𝐹𝑦 ) ∈ ( 𝐹𝑧 ) → ( 𝑤𝑧 → ( 𝐹𝑤 ) ∈ ( 𝐹𝑧 ) ) )
53 49 52 syl6 ( 𝑧𝐴 → ( ∀ 𝑥𝐴𝑦𝑥 ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) → ( 𝑤𝑧 → ( 𝐹𝑤 ) ∈ ( 𝐹𝑧 ) ) ) )
54 53 3imp ( ( 𝑧𝐴 ∧ ∀ 𝑥𝐴𝑦𝑥 ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) ∧ 𝑤𝑧 ) → ( 𝐹𝑤 ) ∈ ( 𝐹𝑧 ) )
55 eleq2 ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → ( ( 𝐹𝑤 ) ∈ ( 𝐹𝑧 ) ↔ ( 𝐹𝑤 ) ∈ ( 𝐹𝑤 ) ) )
56 55 biimpac ( ( ( 𝐹𝑤 ) ∈ ( 𝐹𝑧 ) ∧ ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ) → ( 𝐹𝑤 ) ∈ ( 𝐹𝑤 ) )
57 54 56 sylan ( ( ( 𝑧𝐴 ∧ ∀ 𝑥𝐴𝑦𝑥 ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) ∧ 𝑤𝑧 ) ∧ ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ) → ( 𝐹𝑤 ) ∈ ( 𝐹𝑤 ) )
58 42 43 44 45 57 syl31anc ( ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑧𝐴𝑤𝐴 ) ) ∧ 𝑤𝑧 ∧ ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ) → ( 𝐹𝑤 ) ∈ ( 𝐹𝑤 ) )
59 36 3ad2ant1 ( ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑧𝐴𝑤𝐴 ) ) ∧ 𝑤𝑧 ∧ ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ) → ¬ ( 𝐹𝑤 ) ∈ ( 𝐹𝑤 ) )
60 58 59 pm2.21dd ( ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑧𝐴𝑤𝐴 ) ) ∧ 𝑤𝑧 ∧ ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ) → 𝑧 = 𝑤 )
61 60 3exp ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑧𝐴𝑤𝐴 ) ) → ( 𝑤𝑧 → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) ) )
62 39 41 61 3jaod ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑧𝐴𝑤𝐴 ) ) → ( ( 𝑧𝑤𝑧 = 𝑤𝑤𝑧 ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) ) )
63 11 62 syl5 ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑧𝐴𝑤𝐴 ) ) → ( ( Ord 𝑧 ∧ Ord 𝑤 ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) ) )
64 63 ex ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → ( ( 𝑧𝐴𝑤𝐴 ) → ( ( Ord 𝑧 ∧ Ord 𝑤 ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) ) ) )
65 10 64 mpdd ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → ( ( 𝑧𝐴𝑤𝐴 ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) ) )
66 65 ralrimivv ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → ∀ 𝑧𝐴𝑤𝐴 ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) )
67 2 66 sylan ( ( 𝐹 : 𝐴𝐵 ∧ Smo 𝐹 ) → ∀ 𝑧𝐴𝑤𝐴 ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) )
68 dff13 ( 𝐹 : 𝐴1-1𝐵 ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑧𝐴𝑤𝐴 ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) ) )
69 1 67 68 sylanbrc ( ( 𝐹 : 𝐴𝐵 ∧ Smo 𝐹 ) → 𝐹 : 𝐴1-1𝐵 )