| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl1 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  Smo  𝐹  ∧  Ord  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 2 | 1 | ffnd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  Smo  𝐹  ∧  Ord  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝐹  Fn  𝐴 ) | 
						
							| 3 |  | simpl2 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  Smo  𝐹  ∧  Ord  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  Smo  𝐹 ) | 
						
							| 4 |  | smodm2 | ⊢ ( ( 𝐹  Fn  𝐴  ∧  Smo  𝐹 )  →  Ord  𝐴 ) | 
						
							| 5 | 2 3 4 | syl2anc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  Smo  𝐹  ∧  Ord  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  Ord  𝐴 ) | 
						
							| 6 |  | ordelord | ⊢ ( ( Ord  𝐴  ∧  𝑥  ∈  𝐴 )  →  Ord  𝑥 ) | 
						
							| 7 | 5 6 | sylancom | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  Smo  𝐹  ∧  Ord  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  Ord  𝑥 ) | 
						
							| 8 |  | simpl3 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  Smo  𝐹  ∧  Ord  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  Ord  𝐵 ) | 
						
							| 9 |  | simpr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  Smo  𝐹  ∧  Ord  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 10 |  | smogt | ⊢ ( ( 𝐹  Fn  𝐴  ∧  Smo  𝐹  ∧  𝑥  ∈  𝐴 )  →  𝑥  ⊆  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 11 | 2 3 9 10 | syl3anc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  Smo  𝐹  ∧  Ord  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ⊆  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 12 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 13 | 12 | 3ad2antl1 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  Smo  𝐹  ∧  Ord  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 14 |  | ordtr2 | ⊢ ( ( Ord  𝑥  ∧  Ord  𝐵 )  →  ( ( 𝑥  ⊆  ( 𝐹 ‘ 𝑥 )  ∧  ( 𝐹 ‘ 𝑥 )  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) ) | 
						
							| 15 | 14 | imp | ⊢ ( ( ( Ord  𝑥  ∧  Ord  𝐵 )  ∧  ( 𝑥  ⊆  ( 𝐹 ‘ 𝑥 )  ∧  ( 𝐹 ‘ 𝑥 )  ∈  𝐵 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 16 | 7 8 11 13 15 | syl22anc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  Smo  𝐹  ∧  Ord  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐵 ) | 
						
							| 17 | 16 | ex | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  Smo  𝐹  ∧  Ord  𝐵 )  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 ) ) | 
						
							| 18 | 17 | ssrdv | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  Smo  𝐹  ∧  Ord  𝐵 )  →  𝐴  ⊆  𝐵 ) |