Metamath Proof Explorer


Theorem smodm

Description: The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011)

Ref Expression
Assertion smodm ( Smo 𝐴 → Ord dom 𝐴 )

Proof

Step Hyp Ref Expression
1 df-smo ( Smo 𝐴 ↔ ( 𝐴 : dom 𝐴 ⟶ On ∧ Ord dom 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴 ( 𝑥𝑦 → ( 𝐴𝑥 ) ∈ ( 𝐴𝑦 ) ) ) )
2 1 simp2bi ( Smo 𝐴 → Ord dom 𝐴 )