Description: The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | smodm2 | ⊢ ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → Ord 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smodm | ⊢ ( Smo 𝐹 → Ord dom 𝐹 ) | |
2 | fndm | ⊢ ( 𝐹 Fn 𝐴 → dom 𝐹 = 𝐴 ) | |
3 | ordeq | ⊢ ( dom 𝐹 = 𝐴 → ( Ord dom 𝐹 ↔ Ord 𝐴 ) ) | |
4 | 2 3 | syl | ⊢ ( 𝐹 Fn 𝐴 → ( Ord dom 𝐹 ↔ Ord 𝐴 ) ) |
5 | 4 | biimpa | ⊢ ( ( 𝐹 Fn 𝐴 ∧ Ord dom 𝐹 ) → Ord 𝐴 ) |
6 | 1 5 | sylan2 | ⊢ ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → Ord 𝐴 ) |