Metamath Proof Explorer


Theorem smodm2

Description: The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013)

Ref Expression
Assertion smodm2 ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → Ord 𝐴 )

Proof

Step Hyp Ref Expression
1 smodm ( Smo 𝐹 → Ord dom 𝐹 )
2 fndm ( 𝐹 Fn 𝐴 → dom 𝐹 = 𝐴 )
3 ordeq ( dom 𝐹 = 𝐴 → ( Ord dom 𝐹 ↔ Ord 𝐴 ) )
4 2 3 syl ( 𝐹 Fn 𝐴 → ( Ord dom 𝐹 ↔ Ord 𝐴 ) )
5 4 biimpa ( ( 𝐹 Fn 𝐴 ∧ Ord dom 𝐹 ) → Ord 𝐴 )
6 1 5 sylan2 ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → Ord 𝐴 )