Step |
Hyp |
Ref |
Expression |
1 |
|
smodm |
⊢ ( Smo 𝐵 → Ord dom 𝐵 ) |
2 |
|
ordtr1 |
⊢ ( Ord dom 𝐵 → ( ( 𝐶 ∈ 𝐴 ∧ 𝐴 ∈ dom 𝐵 ) → 𝐶 ∈ dom 𝐵 ) ) |
3 |
2
|
ancomsd |
⊢ ( Ord dom 𝐵 → ( ( 𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ dom 𝐵 ) ) |
4 |
3
|
expdimp |
⊢ ( ( Ord dom 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( 𝐶 ∈ 𝐴 → 𝐶 ∈ dom 𝐵 ) ) |
5 |
1 4
|
sylan |
⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( 𝐶 ∈ 𝐴 → 𝐶 ∈ dom 𝐵 ) ) |
6 |
|
df-smo |
⊢ ( Smo 𝐵 ↔ ( 𝐵 : dom 𝐵 ⟶ On ∧ Ord dom 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐵 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) ) |
7 |
|
eleq1 |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ 𝑦 ↔ 𝐶 ∈ 𝑦 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐵 ‘ 𝑥 ) = ( 𝐵 ‘ 𝐶 ) ) |
9 |
8
|
eleq1d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ↔ ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) |
10 |
7 9
|
imbi12d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ↔ ( 𝐶 ∈ 𝑦 → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) ) |
11 |
|
eleq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐶 ∈ 𝑦 ↔ 𝐶 ∈ 𝐴 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐵 ‘ 𝑦 ) = ( 𝐵 ‘ 𝐴 ) ) |
13 |
12
|
eleq2d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝑦 ) ↔ ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) ) |
14 |
11 13
|
imbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝐶 ∈ 𝑦 → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ↔ ( 𝐶 ∈ 𝐴 → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) ) ) |
15 |
10 14
|
rspc2v |
⊢ ( ( 𝐶 ∈ dom 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( ∀ 𝑥 ∈ dom 𝐵 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) → ( 𝐶 ∈ 𝐴 → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) ) ) |
16 |
15
|
ancoms |
⊢ ( ( 𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ dom 𝐵 ) → ( ∀ 𝑥 ∈ dom 𝐵 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) → ( 𝐶 ∈ 𝐴 → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) ) ) |
17 |
16
|
com12 |
⊢ ( ∀ 𝑥 ∈ dom 𝐵 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) → ( ( 𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ dom 𝐵 ) → ( 𝐶 ∈ 𝐴 → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) ) ) |
18 |
17
|
3ad2ant3 |
⊢ ( ( 𝐵 : dom 𝐵 ⟶ On ∧ Ord dom 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐵 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) → ( ( 𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ dom 𝐵 ) → ( 𝐶 ∈ 𝐴 → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) ) ) |
19 |
6 18
|
sylbi |
⊢ ( Smo 𝐵 → ( ( 𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ dom 𝐵 ) → ( 𝐶 ∈ 𝐴 → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) ) ) |
20 |
19
|
expdimp |
⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( 𝐶 ∈ dom 𝐵 → ( 𝐶 ∈ 𝐴 → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) ) ) |
21 |
5 20
|
syld |
⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( 𝐶 ∈ 𝐴 → ( 𝐶 ∈ 𝐴 → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) ) ) |
22 |
21
|
pm2.43d |
⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( 𝐶 ∈ 𝐴 → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) ) |
23 |
22
|
3impia |
⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐵 ‘ 𝐶 ) ∈ ( 𝐵 ‘ 𝐴 ) ) |