Step |
Hyp |
Ref |
Expression |
1 |
|
fndm |
⊢ ( 𝐹 Fn 𝐴 → dom 𝐹 = 𝐴 ) |
2 |
1
|
eleq2d |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴 ) ) |
3 |
2
|
anbi1d |
⊢ ( 𝐹 Fn 𝐴 → ( ( 𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵 ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) ) ) |
4 |
3
|
biimprd |
⊢ ( 𝐹 Fn 𝐴 → ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵 ) ) ) |
5 |
|
smoel |
⊢ ( ( Smo 𝐹 ∧ 𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐵 ) ) |
6 |
5
|
3expib |
⊢ ( Smo 𝐹 → ( ( 𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐵 ) ) ) |
7 |
4 6
|
sylan9 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐵 ) ) ) |
8 |
7
|
imp |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐵 ) ) |