| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fndm | ⊢ ( 𝐹  Fn  𝐴  →  dom  𝐹  =  𝐴 ) | 
						
							| 2 | 1 | eleq2d | ⊢ ( 𝐹  Fn  𝐴  →  ( 𝐵  ∈  dom  𝐹  ↔  𝐵  ∈  𝐴 ) ) | 
						
							| 3 | 2 | anbi1d | ⊢ ( 𝐹  Fn  𝐴  →  ( ( 𝐵  ∈  dom  𝐹  ∧  𝐶  ∈  𝐵 )  ↔  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐵 ) ) ) | 
						
							| 4 | 3 | biimprd | ⊢ ( 𝐹  Fn  𝐴  →  ( ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐵 )  →  ( 𝐵  ∈  dom  𝐹  ∧  𝐶  ∈  𝐵 ) ) ) | 
						
							| 5 |  | smoel | ⊢ ( ( Smo  𝐹  ∧  𝐵  ∈  dom  𝐹  ∧  𝐶  ∈  𝐵 )  →  ( 𝐹 ‘ 𝐶 )  ∈  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 6 | 5 | 3expib | ⊢ ( Smo  𝐹  →  ( ( 𝐵  ∈  dom  𝐹  ∧  𝐶  ∈  𝐵 )  →  ( 𝐹 ‘ 𝐶 )  ∈  ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 7 | 4 6 | sylan9 | ⊢ ( ( 𝐹  Fn  𝐴  ∧  Smo  𝐹 )  →  ( ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐵 )  →  ( 𝐹 ‘ 𝐶 )  ∈  ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 8 | 7 | imp | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  Smo  𝐹 )  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐵 ) )  →  ( 𝐹 ‘ 𝐶 )  ∈  ( 𝐹 ‘ 𝐵 ) ) |