Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝐴 = 𝐵 → 𝐴 = 𝐵 ) |
2 |
|
dmeq |
⊢ ( 𝐴 = 𝐵 → dom 𝐴 = dom 𝐵 ) |
3 |
1 2
|
feq12d |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 : dom 𝐴 ⟶ On ↔ 𝐵 : dom 𝐵 ⟶ On ) ) |
4 |
|
ordeq |
⊢ ( dom 𝐴 = dom 𝐵 → ( Ord dom 𝐴 ↔ Ord dom 𝐵 ) ) |
5 |
2 4
|
syl |
⊢ ( 𝐴 = 𝐵 → ( Ord dom 𝐴 ↔ Ord dom 𝐵 ) ) |
6 |
|
fveq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
7 |
|
fveq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ‘ 𝑦 ) = ( 𝐵 ‘ 𝑦 ) ) |
8 |
6 7
|
eleq12d |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ↔ ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) |
9 |
8
|
imbi2d |
⊢ ( 𝐴 = 𝐵 → ( ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) ) |
10 |
9
|
2ralbidv |
⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) ) |
11 |
2
|
raleqdv |
⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) ) |
12 |
11
|
ralbidv |
⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) ) |
13 |
2
|
raleqdv |
⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ dom 𝐵 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) ) |
14 |
10 12 13
|
3bitrd |
⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ dom 𝐵 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) ) |
15 |
3 5 14
|
3anbi123d |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 : dom 𝐴 ⟶ On ∧ Ord dom 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) ↔ ( 𝐵 : dom 𝐵 ⟶ On ∧ Ord dom 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐵 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) ) ) |
16 |
|
df-smo |
⊢ ( Smo 𝐴 ↔ ( 𝐴 : dom 𝐴 ⟶ On ∧ Ord dom 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) ) |
17 |
|
df-smo |
⊢ ( Smo 𝐵 ↔ ( 𝐵 : dom 𝐵 ⟶ On ∧ Ord dom 𝐵 ∧ ∀ 𝑥 ∈ dom 𝐵 ∀ 𝑦 ∈ dom 𝐵 ( 𝑥 ∈ 𝑦 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝑦 ) ) ) ) |
18 |
15 16 17
|
3bitr4g |
⊢ ( 𝐴 = 𝐵 → ( Smo 𝐴 ↔ Smo 𝐵 ) ) |