| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfsmo2 | ⊢ ( Smo  𝐹  ↔  ( 𝐹 : dom  𝐹 ⟶ On  ∧  Ord  dom  𝐹  ∧  ∀ 𝑥  ∈  dom  𝐹 ∀ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  ∈  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 2 | 1 | simp1bi | ⊢ ( Smo  𝐹  →  𝐹 : dom  𝐹 ⟶ On ) | 
						
							| 3 |  | ffvelcdm | ⊢ ( ( 𝐹 : dom  𝐹 ⟶ On  ∧  𝐵  ∈  dom  𝐹 )  →  ( 𝐹 ‘ 𝐵 )  ∈  On ) | 
						
							| 4 | 3 | expcom | ⊢ ( 𝐵  ∈  dom  𝐹  →  ( 𝐹 : dom  𝐹 ⟶ On  →  ( 𝐹 ‘ 𝐵 )  ∈  On ) ) | 
						
							| 5 | 2 4 | syl5 | ⊢ ( 𝐵  ∈  dom  𝐹  →  ( Smo  𝐹  →  ( 𝐹 ‘ 𝐵 )  ∈  On ) ) | 
						
							| 6 |  | ndmfv | ⊢ ( ¬  𝐵  ∈  dom  𝐹  →  ( 𝐹 ‘ 𝐵 )  =  ∅ ) | 
						
							| 7 |  | 0elon | ⊢ ∅  ∈  On | 
						
							| 8 | 6 7 | eqeltrdi | ⊢ ( ¬  𝐵  ∈  dom  𝐹  →  ( 𝐹 ‘ 𝐵 )  ∈  On ) | 
						
							| 9 | 8 | a1d | ⊢ ( ¬  𝐵  ∈  dom  𝐹  →  ( Smo  𝐹  →  ( 𝐹 ‘ 𝐵 )  ∈  On ) ) | 
						
							| 10 | 5 9 | pm2.61i | ⊢ ( Smo  𝐹  →  ( 𝐹 ‘ 𝐵 )  ∈  On ) |