| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isof1o | ⊢ ( 𝐹  Isom   E  ,   E  ( 𝐴 ,  𝐵 )  →  𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | 
						
							| 2 |  | f1of | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐹  Isom   E  ,   E  ( 𝐴 ,  𝐵 )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 4 |  | ffdm | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( 𝐹 : dom  𝐹 ⟶ 𝐵  ∧  dom  𝐹  ⊆  𝐴 ) ) | 
						
							| 5 | 4 | simpld | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹 : dom  𝐹 ⟶ 𝐵 ) | 
						
							| 6 |  | fss | ⊢ ( ( 𝐹 : dom  𝐹 ⟶ 𝐵  ∧  𝐵  ⊆  On )  →  𝐹 : dom  𝐹 ⟶ On ) | 
						
							| 7 | 5 6 | sylan | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐵  ⊆  On )  →  𝐹 : dom  𝐹 ⟶ On ) | 
						
							| 8 | 7 | 3adant2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  Ord  𝐴  ∧  𝐵  ⊆  On )  →  𝐹 : dom  𝐹 ⟶ On ) | 
						
							| 9 | 3 8 | syl3an1 | ⊢ ( ( 𝐹  Isom   E  ,   E  ( 𝐴 ,  𝐵 )  ∧  Ord  𝐴  ∧  𝐵  ⊆  On )  →  𝐹 : dom  𝐹 ⟶ On ) | 
						
							| 10 |  | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  dom  𝐹  =  𝐴 ) | 
						
							| 11 | 10 | eqcomd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐴  =  dom  𝐹 ) | 
						
							| 12 |  | ordeq | ⊢ ( 𝐴  =  dom  𝐹  →  ( Ord  𝐴  ↔  Ord  dom  𝐹 ) ) | 
						
							| 13 | 1 2 11 12 | 4syl | ⊢ ( 𝐹  Isom   E  ,   E  ( 𝐴 ,  𝐵 )  →  ( Ord  𝐴  ↔  Ord  dom  𝐹 ) ) | 
						
							| 14 | 13 | biimpa | ⊢ ( ( 𝐹  Isom   E  ,   E  ( 𝐴 ,  𝐵 )  ∧  Ord  𝐴 )  →  Ord  dom  𝐹 ) | 
						
							| 15 | 14 | 3adant3 | ⊢ ( ( 𝐹  Isom   E  ,   E  ( 𝐴 ,  𝐵 )  ∧  Ord  𝐴  ∧  𝐵  ⊆  On )  →  Ord  dom  𝐹 ) | 
						
							| 16 | 10 | eleq2d | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( 𝑥  ∈  dom  𝐹  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 17 | 10 | eleq2d | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( 𝑦  ∈  dom  𝐹  ↔  𝑦  ∈  𝐴 ) ) | 
						
							| 18 | 16 17 | anbi12d | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( ( 𝑥  ∈  dom  𝐹  ∧  𝑦  ∈  dom  𝐹 )  ↔  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) ) ) | 
						
							| 19 | 1 2 18 | 3syl | ⊢ ( 𝐹  Isom   E  ,   E  ( 𝐴 ,  𝐵 )  →  ( ( 𝑥  ∈  dom  𝐹  ∧  𝑦  ∈  dom  𝐹 )  ↔  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) ) ) | 
						
							| 20 |  | isorel | ⊢ ( ( 𝐹  Isom   E  ,   E  ( 𝐴 ,  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( 𝑥  E  𝑦  ↔  ( 𝐹 ‘ 𝑥 )  E  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 21 |  | epel | ⊢ ( 𝑥  E  𝑦  ↔  𝑥  ∈  𝑦 ) | 
						
							| 22 |  | fvex | ⊢ ( 𝐹 ‘ 𝑦 )  ∈  V | 
						
							| 23 | 22 | epeli | ⊢ ( ( 𝐹 ‘ 𝑥 )  E  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 24 | 20 21 23 | 3bitr3g | ⊢ ( ( 𝐹  Isom   E  ,   E  ( 𝐴 ,  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( 𝑥  ∈  𝑦  ↔  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 25 | 24 | biimpd | ⊢ ( ( 𝐹  Isom   E  ,   E  ( 𝐴 ,  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( 𝑥  ∈  𝑦  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 26 | 25 | ex | ⊢ ( 𝐹  Isom   E  ,   E  ( 𝐴 ,  𝐵 )  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  →  ( 𝑥  ∈  𝑦  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 27 | 19 26 | sylbid | ⊢ ( 𝐹  Isom   E  ,   E  ( 𝐴 ,  𝐵 )  →  ( ( 𝑥  ∈  dom  𝐹  ∧  𝑦  ∈  dom  𝐹 )  →  ( 𝑥  ∈  𝑦  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 28 | 27 | ralrimivv | ⊢ ( 𝐹  Isom   E  ,   E  ( 𝐴 ,  𝐵 )  →  ∀ 𝑥  ∈  dom  𝐹 ∀ 𝑦  ∈  dom  𝐹 ( 𝑥  ∈  𝑦  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 29 | 28 | 3ad2ant1 | ⊢ ( ( 𝐹  Isom   E  ,   E  ( 𝐴 ,  𝐵 )  ∧  Ord  𝐴  ∧  𝐵  ⊆  On )  →  ∀ 𝑥  ∈  dom  𝐹 ∀ 𝑦  ∈  dom  𝐹 ( 𝑥  ∈  𝑦  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 30 |  | df-smo | ⊢ ( Smo  𝐹  ↔  ( 𝐹 : dom  𝐹 ⟶ On  ∧  Ord  dom  𝐹  ∧  ∀ 𝑥  ∈  dom  𝐹 ∀ 𝑦  ∈  dom  𝐹 ( 𝑥  ∈  𝑦  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 31 | 9 15 29 30 | syl3anbrc | ⊢ ( ( 𝐹  Isom   E  ,   E  ( 𝐴 ,  𝐵 )  ∧  Ord  𝐴  ∧  𝐵  ⊆  On )  →  Smo  𝐹 ) |