Step |
Hyp |
Ref |
Expression |
1 |
|
fof |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
|
smo11 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Smo 𝐹 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
4 |
|
simpl |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) → 𝐹 : 𝐴 –onto→ 𝐵 ) |
5 |
|
df-f1o |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ) |
6 |
3 4 5
|
sylanbrc |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
7 |
6
|
adantl |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ On ) ∧ ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
8 |
|
fofn |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 Fn 𝐴 ) |
9 |
|
smoord |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
10 |
|
epel |
⊢ ( 𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦 ) |
11 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑦 ) ∈ V |
12 |
11
|
epeli |
⊢ ( ( 𝐹 ‘ 𝑥 ) E ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑦 ) ) |
13 |
9 10 12
|
3bitr4g |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 E 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) E ( 𝐹 ‘ 𝑦 ) ) ) |
14 |
13
|
ralrimivva |
⊢ ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 E 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) E ( 𝐹 ‘ 𝑦 ) ) ) |
15 |
8 14
|
sylan |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 E 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) E ( 𝐹 ‘ 𝑦 ) ) ) |
16 |
15
|
adantl |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ On ) ∧ ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 E 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) E ( 𝐹 ‘ 𝑦 ) ) ) |
17 |
|
df-isom |
⊢ ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ↔ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 E 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) E ( 𝐹 ‘ 𝑦 ) ) ) ) |
18 |
7 16 17
|
sylanbrc |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ⊆ On ) ∧ ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) ) → 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ) |
19 |
18
|
ex |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ⊆ On ) → ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) → 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ) ) |
20 |
|
isof1o |
⊢ ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
21 |
|
f1ofo |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –onto→ 𝐵 ) |
22 |
20 21
|
syl |
⊢ ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴 –onto→ 𝐵 ) |
23 |
22
|
3ad2ant1 |
⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On ) → 𝐹 : 𝐴 –onto→ 𝐵 ) |
24 |
|
smoiso |
⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On ) → Smo 𝐹 ) |
25 |
23 24
|
jca |
⊢ ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On ) → ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) ) |
26 |
25
|
3expib |
⊢ ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → ( ( Ord 𝐴 ∧ 𝐵 ⊆ On ) → ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) ) ) |
27 |
26
|
com12 |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ⊆ On ) → ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) ) ) |
28 |
19 27
|
impbid |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ⊆ On ) → ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Smo 𝐹 ) ↔ 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ) ) |