Metamath Proof Explorer


Theorem smoiso2

Description: The strictly monotone ordinal functions are also isomorphisms of subclasses of On equipped with the membership relation. (Contributed by Mario Carneiro, 20-Mar-2013)

Ref Expression
Assertion smoiso2 ( ( Ord 𝐴𝐵 ⊆ On ) → ( ( 𝐹 : 𝐴onto𝐵 ∧ Smo 𝐹 ) ↔ 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 fof ( 𝐹 : 𝐴onto𝐵𝐹 : 𝐴𝐵 )
2 smo11 ( ( 𝐹 : 𝐴𝐵 ∧ Smo 𝐹 ) → 𝐹 : 𝐴1-1𝐵 )
3 1 2 sylan ( ( 𝐹 : 𝐴onto𝐵 ∧ Smo 𝐹 ) → 𝐹 : 𝐴1-1𝐵 )
4 simpl ( ( 𝐹 : 𝐴onto𝐵 ∧ Smo 𝐹 ) → 𝐹 : 𝐴onto𝐵 )
5 df-f1o ( 𝐹 : 𝐴1-1-onto𝐵 ↔ ( 𝐹 : 𝐴1-1𝐵𝐹 : 𝐴onto𝐵 ) )
6 3 4 5 sylanbrc ( ( 𝐹 : 𝐴onto𝐵 ∧ Smo 𝐹 ) → 𝐹 : 𝐴1-1-onto𝐵 )
7 6 adantl ( ( ( Ord 𝐴𝐵 ⊆ On ) ∧ ( 𝐹 : 𝐴onto𝐵 ∧ Smo 𝐹 ) ) → 𝐹 : 𝐴1-1-onto𝐵 )
8 fofn ( 𝐹 : 𝐴onto𝐵𝐹 Fn 𝐴 )
9 smoord ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( 𝑥𝑦 ↔ ( 𝐹𝑥 ) ∈ ( 𝐹𝑦 ) ) )
10 epel ( 𝑥 E 𝑦𝑥𝑦 )
11 fvex ( 𝐹𝑦 ) ∈ V
12 11 epeli ( ( 𝐹𝑥 ) E ( 𝐹𝑦 ) ↔ ( 𝐹𝑥 ) ∈ ( 𝐹𝑦 ) )
13 9 10 12 3bitr4g ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( 𝑥 E 𝑦 ↔ ( 𝐹𝑥 ) E ( 𝐹𝑦 ) ) )
14 13 ralrimivva ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 E 𝑦 ↔ ( 𝐹𝑥 ) E ( 𝐹𝑦 ) ) )
15 8 14 sylan ( ( 𝐹 : 𝐴onto𝐵 ∧ Smo 𝐹 ) → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 E 𝑦 ↔ ( 𝐹𝑥 ) E ( 𝐹𝑦 ) ) )
16 15 adantl ( ( ( Ord 𝐴𝐵 ⊆ On ) ∧ ( 𝐹 : 𝐴onto𝐵 ∧ Smo 𝐹 ) ) → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 E 𝑦 ↔ ( 𝐹𝑥 ) E ( 𝐹𝑦 ) ) )
17 df-isom ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ↔ ( 𝐹 : 𝐴1-1-onto𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 E 𝑦 ↔ ( 𝐹𝑥 ) E ( 𝐹𝑦 ) ) ) )
18 7 16 17 sylanbrc ( ( ( Ord 𝐴𝐵 ⊆ On ) ∧ ( 𝐹 : 𝐴onto𝐵 ∧ Smo 𝐹 ) ) → 𝐹 Isom E , E ( 𝐴 , 𝐵 ) )
19 18 ex ( ( Ord 𝐴𝐵 ⊆ On ) → ( ( 𝐹 : 𝐴onto𝐵 ∧ Smo 𝐹 ) → 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ) )
20 isof1o ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴1-1-onto𝐵 )
21 f1ofo ( 𝐹 : 𝐴1-1-onto𝐵𝐹 : 𝐴onto𝐵 )
22 20 21 syl ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴onto𝐵 )
23 22 3ad2ant1 ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴𝐵 ⊆ On ) → 𝐹 : 𝐴onto𝐵 )
24 smoiso ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴𝐵 ⊆ On ) → Smo 𝐹 )
25 23 24 jca ( ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴𝐵 ⊆ On ) → ( 𝐹 : 𝐴onto𝐵 ∧ Smo 𝐹 ) )
26 25 3expib ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → ( ( Ord 𝐴𝐵 ⊆ On ) → ( 𝐹 : 𝐴onto𝐵 ∧ Smo 𝐹 ) ) )
27 26 com12 ( ( Ord 𝐴𝐵 ⊆ On ) → ( 𝐹 Isom E , E ( 𝐴 , 𝐵 ) → ( 𝐹 : 𝐴onto𝐵 ∧ Smo 𝐹 ) ) )
28 19 27 impbid ( ( Ord 𝐴𝐵 ⊆ On ) → ( ( 𝐹 : 𝐴onto𝐵 ∧ Smo 𝐹 ) ↔ 𝐹 Isom E , E ( 𝐴 , 𝐵 ) ) )