Step |
Hyp |
Ref |
Expression |
1 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ‘ 𝑥 ) ) |
2 |
|
smofvon |
⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( 𝐵 ‘ 𝐴 ) ∈ On ) |
3 |
|
smoel |
⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝐴 ) ) |
4 |
3
|
3expia |
⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝐴 ) ) ) |
5 |
|
ontr1 |
⊢ ( ( 𝐵 ‘ 𝐴 ) ∈ On → ( ( 𝑦 ∈ ( 𝐵 ‘ 𝑥 ) ∧ ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝐴 ) ) → 𝑦 ∈ ( 𝐵 ‘ 𝐴 ) ) ) |
6 |
5
|
expcomd |
⊢ ( ( 𝐵 ‘ 𝐴 ) ∈ On → ( ( 𝐵 ‘ 𝑥 ) ∈ ( 𝐵 ‘ 𝐴 ) → ( 𝑦 ∈ ( 𝐵 ‘ 𝑥 ) → 𝑦 ∈ ( 𝐵 ‘ 𝐴 ) ) ) ) |
7 |
2 4 6
|
sylsyld |
⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ ( 𝐵 ‘ 𝑥 ) → 𝑦 ∈ ( 𝐵 ‘ 𝐴 ) ) ) ) |
8 |
7
|
rexlimdv |
⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ‘ 𝑥 ) → 𝑦 ∈ ( 𝐵 ‘ 𝐴 ) ) ) |
9 |
1 8
|
syl5bi |
⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ‘ 𝑥 ) → 𝑦 ∈ ( 𝐵 ‘ 𝐴 ) ) ) |
10 |
9
|
ssrdv |
⊢ ( ( Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ) → ∪ 𝑥 ∈ 𝐴 ( 𝐵 ‘ 𝑥 ) ⊆ ( 𝐵 ‘ 𝐴 ) ) |