Metamath Proof Explorer


Theorem smoiun

Description: The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011)

Ref Expression
Assertion smoiun ( ( Smo 𝐵𝐴 ∈ dom 𝐵 ) → 𝑥𝐴 ( 𝐵𝑥 ) ⊆ ( 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 eliun ( 𝑦 𝑥𝐴 ( 𝐵𝑥 ) ↔ ∃ 𝑥𝐴 𝑦 ∈ ( 𝐵𝑥 ) )
2 smofvon ( ( Smo 𝐵𝐴 ∈ dom 𝐵 ) → ( 𝐵𝐴 ) ∈ On )
3 smoel ( ( Smo 𝐵𝐴 ∈ dom 𝐵𝑥𝐴 ) → ( 𝐵𝑥 ) ∈ ( 𝐵𝐴 ) )
4 3 3expia ( ( Smo 𝐵𝐴 ∈ dom 𝐵 ) → ( 𝑥𝐴 → ( 𝐵𝑥 ) ∈ ( 𝐵𝐴 ) ) )
5 ontr1 ( ( 𝐵𝐴 ) ∈ On → ( ( 𝑦 ∈ ( 𝐵𝑥 ) ∧ ( 𝐵𝑥 ) ∈ ( 𝐵𝐴 ) ) → 𝑦 ∈ ( 𝐵𝐴 ) ) )
6 5 expcomd ( ( 𝐵𝐴 ) ∈ On → ( ( 𝐵𝑥 ) ∈ ( 𝐵𝐴 ) → ( 𝑦 ∈ ( 𝐵𝑥 ) → 𝑦 ∈ ( 𝐵𝐴 ) ) ) )
7 2 4 6 sylsyld ( ( Smo 𝐵𝐴 ∈ dom 𝐵 ) → ( 𝑥𝐴 → ( 𝑦 ∈ ( 𝐵𝑥 ) → 𝑦 ∈ ( 𝐵𝐴 ) ) ) )
8 7 rexlimdv ( ( Smo 𝐵𝐴 ∈ dom 𝐵 ) → ( ∃ 𝑥𝐴 𝑦 ∈ ( 𝐵𝑥 ) → 𝑦 ∈ ( 𝐵𝐴 ) ) )
9 1 8 syl5bi ( ( Smo 𝐵𝐴 ∈ dom 𝐵 ) → ( 𝑦 𝑥𝐴 ( 𝐵𝑥 ) → 𝑦 ∈ ( 𝐵𝐴 ) ) )
10 9 ssrdv ( ( Smo 𝐵𝐴 ∈ dom 𝐵 ) → 𝑥𝐴 ( 𝐵𝑥 ) ⊆ ( 𝐵𝐴 ) )