Step |
Hyp |
Ref |
Expression |
1 |
|
smonoord.0 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
smonoord.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
3 |
|
smonoord.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
4 |
|
smonoord.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) < ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
5 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
6 |
2 5
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
7 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↔ ( 𝑀 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) |
9 |
8
|
breq2d |
⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) ) |
10 |
7 9
|
imbi12d |
⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝑀 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) ) ) |
11 |
10
|
imbi2d |
⊢ ( 𝑥 = ( 𝑀 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( ( 𝑀 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
12 |
|
eleq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↔ 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑛 ) ) |
14 |
13
|
breq2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑛 ) ) ) |
15 |
12 14
|
imbi12d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑛 ) ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
17 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↔ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
18 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
19 |
18
|
breq2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
20 |
17 19
|
imbi12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
21 |
20
|
imbi2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
22 |
|
eleq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↔ 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
23 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑁 ) ) |
24 |
23
|
breq2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑁 ) ) ) |
25 |
22 24
|
imbi12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑁 ) ) ) ) |
26 |
25
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑁 ) ) ) ) ) |
27 |
|
eluzp1m1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
28 |
1 2 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
29 |
|
eluzfz1 |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
30 |
28 29
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
31 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹 ‘ 𝑘 ) < ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
32 |
|
fveq2 |
⊢ ( 𝑘 = 𝑀 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) |
33 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑀 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) |
34 |
32 33
|
breq12d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝐹 ‘ 𝑘 ) < ( 𝐹 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) ) |
35 |
34
|
rspcv |
⊢ ( 𝑀 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → ( ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹 ‘ 𝑘 ) < ( 𝐹 ‘ ( 𝑘 + 1 ) ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) ) |
36 |
30 31 35
|
sylc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) |
37 |
36
|
a1d |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) ) |
38 |
37
|
a1i |
⊢ ( ( 𝑀 + 1 ) ∈ ℤ → ( 𝜑 → ( ( 𝑀 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) ) ) |
39 |
|
peano2fzr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
40 |
39
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
41 |
40
|
ex |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
42 |
41
|
imim1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑛 ) ) → ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑛 ) ) ) ) |
43 |
|
peano2uzr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
44 |
43
|
ex |
⊢ ( 𝑀 ∈ ℤ → ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
45 |
44 1
|
syl11 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( 𝜑 → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
46 |
45
|
adantr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝜑 → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
47 |
46
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
48 |
|
eluzelz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → 𝑛 ∈ ℤ ) |
49 |
48
|
adantr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑛 ∈ ℤ ) |
50 |
49
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → 𝑛 ∈ ℤ ) |
51 |
|
elfzuz3 |
⊢ ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
52 |
51
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
53 |
|
eluzp1m1 |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) |
54 |
50 52 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) |
55 |
|
elfzuzb |
⊢ ( 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ↔ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) ) |
56 |
47 54 55
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
57 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹 ‘ 𝑘 ) < ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
58 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) |
59 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
60 |
58 59
|
breq12d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) < ( 𝐹 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
61 |
60
|
rspcv |
⊢ ( 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → ( ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹 ‘ 𝑘 ) < ( 𝐹 ‘ ( 𝑘 + 1 ) ) → ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
62 |
56 57 61
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
63 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
64 |
63
|
lep1d |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ≤ ( 𝑀 + 1 ) ) |
65 |
1 64
|
jccir |
⊢ ( 𝜑 → ( 𝑀 ∈ ℤ ∧ 𝑀 ≤ ( 𝑀 + 1 ) ) ) |
66 |
|
eluzuzle |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≤ ( 𝑀 + 1 ) ) → ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
67 |
65 2 66
|
sylc |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
68 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
69 |
67 68
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
70 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
71 |
32
|
eleq1d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) ) |
72 |
71
|
rspcv |
⊢ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ → ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) ) |
73 |
69 70 72
|
sylc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) |
74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) |
75 |
|
fzp1ss |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
76 |
1 75
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
77 |
76
|
sseld |
⊢ ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) |
78 |
77
|
com12 |
⊢ ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝜑 → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) |
79 |
78
|
adantl |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝜑 → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) |
80 |
79
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
81 |
|
peano2fzr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
82 |
47 80 81
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
83 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
84 |
58
|
eleq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) ) |
85 |
84
|
rspcv |
⊢ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) ) |
86 |
82 83 85
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
87 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
88 |
87
|
eleq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) ) |
89 |
88
|
rspcv |
⊢ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) ) |
90 |
80 83 89
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) |
91 |
|
lttr |
⊢ ( ( ( 𝐹 ‘ 𝑀 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑛 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑛 ) ∧ ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
92 |
74 86 90 91
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( ( ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑛 ) ∧ ( 𝐹 ‘ 𝑛 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
93 |
62 92
|
mpan2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) → ( ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑛 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
94 |
42 93
|
animpimp2impd |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( ( 𝜑 → ( 𝑛 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
95 |
11 16 21 26 38 94
|
uzind4 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( 𝜑 → ( 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑁 ) ) ) ) |
96 |
2 95
|
mpcom |
⊢ ( 𝜑 → ( 𝑁 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑁 ) ) ) |
97 |
6 96
|
mpd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) < ( 𝐹 ‘ 𝑁 ) ) |