Metamath Proof Explorer


Theorem smoord

Description: A strictly monotone ordinal function preserves strict ordering. (Contributed by Mario Carneiro, 4-Mar-2013)

Ref Expression
Assertion smoord ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( 𝐶𝐷 ↔ ( 𝐹𝐶 ) ∈ ( 𝐹𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 smodm2 ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → Ord 𝐴 )
2 simprl ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → 𝐶𝐴 )
3 ordelord ( ( Ord 𝐴𝐶𝐴 ) → Ord 𝐶 )
4 1 2 3 syl2an2r ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → Ord 𝐶 )
5 simprr ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → 𝐷𝐴 )
6 ordelord ( ( Ord 𝐴𝐷𝐴 ) → Ord 𝐷 )
7 1 5 6 syl2an2r ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → Ord 𝐷 )
8 ordtri3or ( ( Ord 𝐶 ∧ Ord 𝐷 ) → ( 𝐶𝐷𝐶 = 𝐷𝐷𝐶 ) )
9 simp3 ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ∧ 𝐶𝐷 ) → 𝐶𝐷 )
10 smoel2 ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐷𝐴𝐶𝐷 ) ) → ( 𝐹𝐶 ) ∈ ( 𝐹𝐷 ) )
11 10 expr ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ 𝐷𝐴 ) → ( 𝐶𝐷 → ( 𝐹𝐶 ) ∈ ( 𝐹𝐷 ) ) )
12 11 adantrl ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( 𝐶𝐷 → ( 𝐹𝐶 ) ∈ ( 𝐹𝐷 ) ) )
13 12 3impia ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ∧ 𝐶𝐷 ) → ( 𝐹𝐶 ) ∈ ( 𝐹𝐷 ) )
14 9 13 2thd ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ∧ 𝐶𝐷 ) → ( 𝐶𝐷 ↔ ( 𝐹𝐶 ) ∈ ( 𝐹𝐷 ) ) )
15 14 3expia ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( 𝐶𝐷 → ( 𝐶𝐷 ↔ ( 𝐹𝐶 ) ∈ ( 𝐹𝐷 ) ) ) )
16 ordirr ( Ord 𝐶 → ¬ 𝐶𝐶 )
17 4 16 syl ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ¬ 𝐶𝐶 )
18 17 3adant3 ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ∧ 𝐶 = 𝐷 ) → ¬ 𝐶𝐶 )
19 simp3 ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ∧ 𝐶 = 𝐷 ) → 𝐶 = 𝐷 )
20 18 19 neleqtrd ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ∧ 𝐶 = 𝐷 ) → ¬ 𝐶𝐷 )
21 smofvon2 ( Smo 𝐹 → ( 𝐹𝐶 ) ∈ On )
22 21 ad2antlr ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( 𝐹𝐶 ) ∈ On )
23 eloni ( ( 𝐹𝐶 ) ∈ On → Ord ( 𝐹𝐶 ) )
24 ordirr ( Ord ( 𝐹𝐶 ) → ¬ ( 𝐹𝐶 ) ∈ ( 𝐹𝐶 ) )
25 22 23 24 3syl ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ¬ ( 𝐹𝐶 ) ∈ ( 𝐹𝐶 ) )
26 25 3adant3 ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ∧ 𝐶 = 𝐷 ) → ¬ ( 𝐹𝐶 ) ∈ ( 𝐹𝐶 ) )
27 19 fveq2d ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ∧ 𝐶 = 𝐷 ) → ( 𝐹𝐶 ) = ( 𝐹𝐷 ) )
28 26 27 neleqtrd ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ∧ 𝐶 = 𝐷 ) → ¬ ( 𝐹𝐶 ) ∈ ( 𝐹𝐷 ) )
29 20 28 2falsed ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ∧ 𝐶 = 𝐷 ) → ( 𝐶𝐷 ↔ ( 𝐹𝐶 ) ∈ ( 𝐹𝐷 ) ) )
30 29 3expia ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( 𝐶 = 𝐷 → ( 𝐶𝐷 ↔ ( 𝐹𝐶 ) ∈ ( 𝐹𝐷 ) ) ) )
31 7 3adant3 ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ∧ 𝐷𝐶 ) → Ord 𝐷 )
32 ordn2lp ( Ord 𝐷 → ¬ ( 𝐷𝐶𝐶𝐷 ) )
33 31 32 syl ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ∧ 𝐷𝐶 ) → ¬ ( 𝐷𝐶𝐶𝐷 ) )
34 pm3.2 ( 𝐷𝐶 → ( 𝐶𝐷 → ( 𝐷𝐶𝐶𝐷 ) ) )
35 34 3ad2ant3 ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ∧ 𝐷𝐶 ) → ( 𝐶𝐷 → ( 𝐷𝐶𝐶𝐷 ) ) )
36 33 35 mtod ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ∧ 𝐷𝐶 ) → ¬ 𝐶𝐷 )
37 22 23 syl ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → Ord ( 𝐹𝐶 ) )
38 37 3adant3 ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ∧ 𝐷𝐶 ) → Ord ( 𝐹𝐶 ) )
39 ordn2lp ( Ord ( 𝐹𝐶 ) → ¬ ( ( 𝐹𝐶 ) ∈ ( 𝐹𝐷 ) ∧ ( 𝐹𝐷 ) ∈ ( 𝐹𝐶 ) ) )
40 38 39 syl ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ∧ 𝐷𝐶 ) → ¬ ( ( 𝐹𝐶 ) ∈ ( 𝐹𝐷 ) ∧ ( 𝐹𝐷 ) ∈ ( 𝐹𝐶 ) ) )
41 smoel2 ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐶 ) ) → ( 𝐹𝐷 ) ∈ ( 𝐹𝐶 ) )
42 41 adantrlr ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( ( 𝐶𝐴𝐷𝐴 ) ∧ 𝐷𝐶 ) ) → ( 𝐹𝐷 ) ∈ ( 𝐹𝐶 ) )
43 42 3impb ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ∧ 𝐷𝐶 ) → ( 𝐹𝐷 ) ∈ ( 𝐹𝐶 ) )
44 pm3.21 ( ( 𝐹𝐷 ) ∈ ( 𝐹𝐶 ) → ( ( 𝐹𝐶 ) ∈ ( 𝐹𝐷 ) → ( ( 𝐹𝐶 ) ∈ ( 𝐹𝐷 ) ∧ ( 𝐹𝐷 ) ∈ ( 𝐹𝐶 ) ) ) )
45 43 44 syl ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ∧ 𝐷𝐶 ) → ( ( 𝐹𝐶 ) ∈ ( 𝐹𝐷 ) → ( ( 𝐹𝐶 ) ∈ ( 𝐹𝐷 ) ∧ ( 𝐹𝐷 ) ∈ ( 𝐹𝐶 ) ) ) )
46 40 45 mtod ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ∧ 𝐷𝐶 ) → ¬ ( 𝐹𝐶 ) ∈ ( 𝐹𝐷 ) )
47 36 46 2falsed ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ∧ 𝐷𝐶 ) → ( 𝐶𝐷 ↔ ( 𝐹𝐶 ) ∈ ( 𝐹𝐷 ) ) )
48 47 3expia ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( 𝐷𝐶 → ( 𝐶𝐷 ↔ ( 𝐹𝐶 ) ∈ ( 𝐹𝐷 ) ) ) )
49 15 30 48 3jaod ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( ( 𝐶𝐷𝐶 = 𝐷𝐷𝐶 ) → ( 𝐶𝐷 ↔ ( 𝐹𝐶 ) ∈ ( 𝐹𝐷 ) ) ) )
50 8 49 syl5 ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( ( Ord 𝐶 ∧ Ord 𝐷 ) → ( 𝐶𝐷 ↔ ( 𝐹𝐶 ) ∈ ( 𝐹𝐷 ) ) ) )
51 4 7 50 mp2and ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( 𝐶𝐷 ↔ ( 𝐹𝐶 ) ∈ ( 𝐹𝐷 ) ) )