| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smodm2 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) → Ord 𝐴 ) |
| 2 |
|
simprl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → 𝐶 ∈ 𝐴 ) |
| 3 |
|
ordelord |
⊢ ( ( Ord 𝐴 ∧ 𝐶 ∈ 𝐴 ) → Ord 𝐶 ) |
| 4 |
1 2 3
|
syl2an2r |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → Ord 𝐶 ) |
| 5 |
|
simprr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → 𝐷 ∈ 𝐴 ) |
| 6 |
|
ordelord |
⊢ ( ( Ord 𝐴 ∧ 𝐷 ∈ 𝐴 ) → Ord 𝐷 ) |
| 7 |
1 5 6
|
syl2an2r |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → Ord 𝐷 ) |
| 8 |
|
ordtri3or |
⊢ ( ( Ord 𝐶 ∧ Ord 𝐷 ) → ( 𝐶 ∈ 𝐷 ∨ 𝐶 = 𝐷 ∨ 𝐷 ∈ 𝐶 ) ) |
| 9 |
|
simp3 |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐶 ∈ 𝐷 ) → 𝐶 ∈ 𝐷 ) |
| 10 |
|
smoel2 |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐷 ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) |
| 11 |
10
|
expr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ 𝐷 ∈ 𝐴 ) → ( 𝐶 ∈ 𝐷 → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) |
| 12 |
11
|
adantrl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 ∈ 𝐷 → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) |
| 13 |
12
|
3impia |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐶 ∈ 𝐷 ) → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) |
| 14 |
9 13
|
2thd |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐶 ∈ 𝐷 ) → ( 𝐶 ∈ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) |
| 15 |
14
|
3expia |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 ∈ 𝐷 → ( 𝐶 ∈ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) ) |
| 16 |
|
ordirr |
⊢ ( Ord 𝐶 → ¬ 𝐶 ∈ 𝐶 ) |
| 17 |
4 16
|
syl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ¬ 𝐶 ∈ 𝐶 ) |
| 18 |
17
|
3adant3 |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐶 = 𝐷 ) → ¬ 𝐶 ∈ 𝐶 ) |
| 19 |
|
simp3 |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐶 = 𝐷 ) → 𝐶 = 𝐷 ) |
| 20 |
18 19
|
neleqtrd |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐶 = 𝐷 ) → ¬ 𝐶 ∈ 𝐷 ) |
| 21 |
|
smofvon2 |
⊢ ( Smo 𝐹 → ( 𝐹 ‘ 𝐶 ) ∈ On ) |
| 22 |
21
|
ad2antlr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝐶 ) ∈ On ) |
| 23 |
|
eloni |
⊢ ( ( 𝐹 ‘ 𝐶 ) ∈ On → Ord ( 𝐹 ‘ 𝐶 ) ) |
| 24 |
|
ordirr |
⊢ ( Ord ( 𝐹 ‘ 𝐶 ) → ¬ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐶 ) ) |
| 25 |
22 23 24
|
3syl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ¬ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐶 ) ) |
| 26 |
25
|
3adant3 |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐶 = 𝐷 ) → ¬ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐶 ) ) |
| 27 |
19
|
fveq2d |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐶 = 𝐷 ) → ( 𝐹 ‘ 𝐶 ) = ( 𝐹 ‘ 𝐷 ) ) |
| 28 |
26 27
|
neleqtrd |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐶 = 𝐷 ) → ¬ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) |
| 29 |
20 28
|
2falsed |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐶 = 𝐷 ) → ( 𝐶 ∈ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) |
| 30 |
29
|
3expia |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 = 𝐷 → ( 𝐶 ∈ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) ) |
| 31 |
7
|
3adant3 |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 ∈ 𝐶 ) → Ord 𝐷 ) |
| 32 |
|
ordn2lp |
⊢ ( Ord 𝐷 → ¬ ( 𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ) ) |
| 33 |
31 32
|
syl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 ∈ 𝐶 ) → ¬ ( 𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ) ) |
| 34 |
|
pm3.2 |
⊢ ( 𝐷 ∈ 𝐶 → ( 𝐶 ∈ 𝐷 → ( 𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ) ) ) |
| 35 |
34
|
3ad2ant3 |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 ∈ 𝐶 ) → ( 𝐶 ∈ 𝐷 → ( 𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ) ) ) |
| 36 |
33 35
|
mtod |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 ∈ 𝐶 ) → ¬ 𝐶 ∈ 𝐷 ) |
| 37 |
22 23
|
syl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → Ord ( 𝐹 ‘ 𝐶 ) ) |
| 38 |
37
|
3adant3 |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 ∈ 𝐶 ) → Ord ( 𝐹 ‘ 𝐶 ) ) |
| 39 |
|
ordn2lp |
⊢ ( Ord ( 𝐹 ‘ 𝐶 ) → ¬ ( ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 ‘ 𝐶 ) ) ) |
| 40 |
38 39
|
syl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 ∈ 𝐶 ) → ¬ ( ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 ‘ 𝐶 ) ) ) |
| 41 |
|
smoel2 |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 ‘ 𝐶 ) ) |
| 42 |
41
|
adantrlr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 ‘ 𝐶 ) ) |
| 43 |
42
|
3impb |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 ∈ 𝐶 ) → ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 ‘ 𝐶 ) ) |
| 44 |
|
pm3.21 |
⊢ ( ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 ‘ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) → ( ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 ‘ 𝐶 ) ) ) ) |
| 45 |
43 44
|
syl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) → ( ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝐷 ) ∈ ( 𝐹 ‘ 𝐶 ) ) ) ) |
| 46 |
40 45
|
mtod |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 ∈ 𝐶 ) → ¬ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) |
| 47 |
36 46
|
2falsed |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ∧ 𝐷 ∈ 𝐶 ) → ( 𝐶 ∈ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) |
| 48 |
47
|
3expia |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐷 ∈ 𝐶 → ( 𝐶 ∈ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) ) |
| 49 |
15 30 48
|
3jaod |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝐶 ∈ 𝐷 ∨ 𝐶 = 𝐷 ∨ 𝐷 ∈ 𝐶 ) → ( 𝐶 ∈ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) ) |
| 50 |
8 49
|
syl5 |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( Ord 𝐶 ∧ Ord 𝐷 ) → ( 𝐶 ∈ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) ) |
| 51 |
4 7 50
|
mp2and |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ Smo 𝐹 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 ∈ 𝐷 ↔ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 ‘ 𝐷 ) ) ) |