Metamath Proof Explorer


Theorem smores3

Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011)

Ref Expression
Assertion smores3 ( ( Smo ( 𝐴𝐵 ) ∧ 𝐶 ∈ ( dom 𝐴𝐵 ) ∧ Ord 𝐵 ) → Smo ( 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 dmres dom ( 𝐴𝐵 ) = ( 𝐵 ∩ dom 𝐴 )
2 incom ( 𝐵 ∩ dom 𝐴 ) = ( dom 𝐴𝐵 )
3 1 2 eqtri dom ( 𝐴𝐵 ) = ( dom 𝐴𝐵 )
4 3 eleq2i ( 𝐶 ∈ dom ( 𝐴𝐵 ) ↔ 𝐶 ∈ ( dom 𝐴𝐵 ) )
5 smores ( ( Smo ( 𝐴𝐵 ) ∧ 𝐶 ∈ dom ( 𝐴𝐵 ) ) → Smo ( ( 𝐴𝐵 ) ↾ 𝐶 ) )
6 4 5 sylan2br ( ( Smo ( 𝐴𝐵 ) ∧ 𝐶 ∈ ( dom 𝐴𝐵 ) ) → Smo ( ( 𝐴𝐵 ) ↾ 𝐶 ) )
7 6 3adant3 ( ( Smo ( 𝐴𝐵 ) ∧ 𝐶 ∈ ( dom 𝐴𝐵 ) ∧ Ord 𝐵 ) → Smo ( ( 𝐴𝐵 ) ↾ 𝐶 ) )
8 elinel2 ( 𝐶 ∈ ( dom 𝐴𝐵 ) → 𝐶𝐵 )
9 ordelss ( ( Ord 𝐵𝐶𝐵 ) → 𝐶𝐵 )
10 9 ancoms ( ( 𝐶𝐵 ∧ Ord 𝐵 ) → 𝐶𝐵 )
11 8 10 sylan ( ( 𝐶 ∈ ( dom 𝐴𝐵 ) ∧ Ord 𝐵 ) → 𝐶𝐵 )
12 11 3adant1 ( ( Smo ( 𝐴𝐵 ) ∧ 𝐶 ∈ ( dom 𝐴𝐵 ) ∧ Ord 𝐵 ) → 𝐶𝐵 )
13 resabs1 ( 𝐶𝐵 → ( ( 𝐴𝐵 ) ↾ 𝐶 ) = ( 𝐴𝐶 ) )
14 smoeq ( ( ( 𝐴𝐵 ) ↾ 𝐶 ) = ( 𝐴𝐶 ) → ( Smo ( ( 𝐴𝐵 ) ↾ 𝐶 ) ↔ Smo ( 𝐴𝐶 ) ) )
15 12 13 14 3syl ( ( Smo ( 𝐴𝐵 ) ∧ 𝐶 ∈ ( dom 𝐴𝐵 ) ∧ Ord 𝐵 ) → ( Smo ( ( 𝐴𝐵 ) ↾ 𝐶 ) ↔ Smo ( 𝐴𝐶 ) ) )
16 7 15 mpbid ( ( Smo ( 𝐴𝐵 ) ∧ 𝐶 ∈ ( dom 𝐴𝐵 ) ∧ Ord 𝐵 ) → Smo ( 𝐴𝐶 ) )