Step |
Hyp |
Ref |
Expression |
1 |
|
dmres |
⊢ dom ( 𝐴 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐴 ) |
2 |
|
incom |
⊢ ( 𝐵 ∩ dom 𝐴 ) = ( dom 𝐴 ∩ 𝐵 ) |
3 |
1 2
|
eqtri |
⊢ dom ( 𝐴 ↾ 𝐵 ) = ( dom 𝐴 ∩ 𝐵 ) |
4 |
3
|
eleq2i |
⊢ ( 𝐶 ∈ dom ( 𝐴 ↾ 𝐵 ) ↔ 𝐶 ∈ ( dom 𝐴 ∩ 𝐵 ) ) |
5 |
|
smores |
⊢ ( ( Smo ( 𝐴 ↾ 𝐵 ) ∧ 𝐶 ∈ dom ( 𝐴 ↾ 𝐵 ) ) → Smo ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) ) |
6 |
4 5
|
sylan2br |
⊢ ( ( Smo ( 𝐴 ↾ 𝐵 ) ∧ 𝐶 ∈ ( dom 𝐴 ∩ 𝐵 ) ) → Smo ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) ) |
7 |
6
|
3adant3 |
⊢ ( ( Smo ( 𝐴 ↾ 𝐵 ) ∧ 𝐶 ∈ ( dom 𝐴 ∩ 𝐵 ) ∧ Ord 𝐵 ) → Smo ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) ) |
8 |
|
elinel2 |
⊢ ( 𝐶 ∈ ( dom 𝐴 ∩ 𝐵 ) → 𝐶 ∈ 𝐵 ) |
9 |
|
ordelss |
⊢ ( ( Ord 𝐵 ∧ 𝐶 ∈ 𝐵 ) → 𝐶 ⊆ 𝐵 ) |
10 |
9
|
ancoms |
⊢ ( ( 𝐶 ∈ 𝐵 ∧ Ord 𝐵 ) → 𝐶 ⊆ 𝐵 ) |
11 |
8 10
|
sylan |
⊢ ( ( 𝐶 ∈ ( dom 𝐴 ∩ 𝐵 ) ∧ Ord 𝐵 ) → 𝐶 ⊆ 𝐵 ) |
12 |
11
|
3adant1 |
⊢ ( ( Smo ( 𝐴 ↾ 𝐵 ) ∧ 𝐶 ∈ ( dom 𝐴 ∩ 𝐵 ) ∧ Ord 𝐵 ) → 𝐶 ⊆ 𝐵 ) |
13 |
|
resabs1 |
⊢ ( 𝐶 ⊆ 𝐵 → ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) = ( 𝐴 ↾ 𝐶 ) ) |
14 |
|
smoeq |
⊢ ( ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) = ( 𝐴 ↾ 𝐶 ) → ( Smo ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) ↔ Smo ( 𝐴 ↾ 𝐶 ) ) ) |
15 |
12 13 14
|
3syl |
⊢ ( ( Smo ( 𝐴 ↾ 𝐵 ) ∧ 𝐶 ∈ ( dom 𝐴 ∩ 𝐵 ) ∧ Ord 𝐵 ) → ( Smo ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) ↔ Smo ( 𝐴 ↾ 𝐶 ) ) ) |
16 |
7 15
|
mpbid |
⊢ ( ( Smo ( 𝐴 ↾ 𝐵 ) ∧ 𝐶 ∈ ( dom 𝐴 ∩ 𝐵 ) ∧ Ord 𝐵 ) → Smo ( 𝐴 ↾ 𝐶 ) ) |