| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smoord | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  Smo  𝐹 )  ∧  ( 𝐷  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ( 𝐷  ∈  𝐶  ↔  ( 𝐹 ‘ 𝐷 )  ∈  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 2 | 1 | notbid | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  Smo  𝐹 )  ∧  ( 𝐷  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) )  →  ( ¬  𝐷  ∈  𝐶  ↔  ¬  ( 𝐹 ‘ 𝐷 )  ∈  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 3 | 2 | ancom2s | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  Smo  𝐹 )  ∧  ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ( ¬  𝐷  ∈  𝐶  ↔  ¬  ( 𝐹 ‘ 𝐷 )  ∈  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 4 |  | smodm2 | ⊢ ( ( 𝐹  Fn  𝐴  ∧  Smo  𝐹 )  →  Ord  𝐴 ) | 
						
							| 5 |  | simprl | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  Smo  𝐹 )  ∧  ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  𝐶  ∈  𝐴 ) | 
						
							| 6 |  | ordelord | ⊢ ( ( Ord  𝐴  ∧  𝐶  ∈  𝐴 )  →  Ord  𝐶 ) | 
						
							| 7 | 4 5 6 | syl2an2r | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  Smo  𝐹 )  ∧  ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  Ord  𝐶 ) | 
						
							| 8 |  | simprr | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  Smo  𝐹 )  ∧  ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  𝐷  ∈  𝐴 ) | 
						
							| 9 |  | ordelord | ⊢ ( ( Ord  𝐴  ∧  𝐷  ∈  𝐴 )  →  Ord  𝐷 ) | 
						
							| 10 | 4 8 9 | syl2an2r | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  Smo  𝐹 )  ∧  ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  Ord  𝐷 ) | 
						
							| 11 |  | ordtri1 | ⊢ ( ( Ord  𝐶  ∧  Ord  𝐷 )  →  ( 𝐶  ⊆  𝐷  ↔  ¬  𝐷  ∈  𝐶 ) ) | 
						
							| 12 | 7 10 11 | syl2anc | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  Smo  𝐹 )  ∧  ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ( 𝐶  ⊆  𝐷  ↔  ¬  𝐷  ∈  𝐶 ) ) | 
						
							| 13 |  | simplr | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  Smo  𝐹 )  ∧  ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  Smo  𝐹 ) | 
						
							| 14 |  | smofvon2 | ⊢ ( Smo  𝐹  →  ( 𝐹 ‘ 𝐶 )  ∈  On ) | 
						
							| 15 |  | eloni | ⊢ ( ( 𝐹 ‘ 𝐶 )  ∈  On  →  Ord  ( 𝐹 ‘ 𝐶 ) ) | 
						
							| 16 | 13 14 15 | 3syl | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  Smo  𝐹 )  ∧  ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  Ord  ( 𝐹 ‘ 𝐶 ) ) | 
						
							| 17 |  | smofvon2 | ⊢ ( Smo  𝐹  →  ( 𝐹 ‘ 𝐷 )  ∈  On ) | 
						
							| 18 |  | eloni | ⊢ ( ( 𝐹 ‘ 𝐷 )  ∈  On  →  Ord  ( 𝐹 ‘ 𝐷 ) ) | 
						
							| 19 | 13 17 18 | 3syl | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  Smo  𝐹 )  ∧  ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  Ord  ( 𝐹 ‘ 𝐷 ) ) | 
						
							| 20 |  | ordtri1 | ⊢ ( ( Ord  ( 𝐹 ‘ 𝐶 )  ∧  Ord  ( 𝐹 ‘ 𝐷 ) )  →  ( ( 𝐹 ‘ 𝐶 )  ⊆  ( 𝐹 ‘ 𝐷 )  ↔  ¬  ( 𝐹 ‘ 𝐷 )  ∈  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 21 | 16 19 20 | syl2anc | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  Smo  𝐹 )  ∧  ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ( ( 𝐹 ‘ 𝐶 )  ⊆  ( 𝐹 ‘ 𝐷 )  ↔  ¬  ( 𝐹 ‘ 𝐷 )  ∈  ( 𝐹 ‘ 𝐶 ) ) ) | 
						
							| 22 | 3 12 21 | 3bitr4d | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  Smo  𝐹 )  ∧  ( 𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ( 𝐶  ⊆  𝐷  ↔  ( 𝐹 ‘ 𝐶 )  ⊆  ( 𝐹 ‘ 𝐷 ) ) ) |