| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smuval.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ0 ) |
| 2 |
|
smuval.b |
⊢ ( 𝜑 → 𝐵 ⊆ ℕ0 ) |
| 3 |
|
smuval.p |
⊢ 𝑃 = seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) |
| 4 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 5 |
4
|
elpw2 |
⊢ ( 𝐴 ∈ 𝒫 ℕ0 ↔ 𝐴 ⊆ ℕ0 ) |
| 6 |
1 5
|
sylibr |
⊢ ( 𝜑 → 𝐴 ∈ 𝒫 ℕ0 ) |
| 7 |
4
|
elpw2 |
⊢ ( 𝐵 ∈ 𝒫 ℕ0 ↔ 𝐵 ⊆ ℕ0 ) |
| 8 |
2 7
|
sylibr |
⊢ ( 𝜑 → 𝐵 ∈ 𝒫 ℕ0 ) |
| 9 |
|
simp1l |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑝 ∈ 𝒫 ℕ0 ∧ 𝑚 ∈ ℕ0 ) → 𝑥 = 𝐴 ) |
| 10 |
9
|
eleq2d |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑝 ∈ 𝒫 ℕ0 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 ∈ 𝑥 ↔ 𝑚 ∈ 𝐴 ) ) |
| 11 |
|
simp1r |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑝 ∈ 𝒫 ℕ0 ∧ 𝑚 ∈ ℕ0 ) → 𝑦 = 𝐵 ) |
| 12 |
11
|
eleq2d |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑝 ∈ 𝒫 ℕ0 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑛 − 𝑚 ) ∈ 𝑦 ↔ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) ) |
| 13 |
10 12
|
anbi12d |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑝 ∈ 𝒫 ℕ0 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 ∈ 𝑥 ∧ ( 𝑛 − 𝑚 ) ∈ 𝑦 ) ↔ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) ) ) |
| 14 |
13
|
rabbidv |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑝 ∈ 𝒫 ℕ0 ∧ 𝑚 ∈ ℕ0 ) → { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝑥 ∧ ( 𝑛 − 𝑚 ) ∈ 𝑦 ) } = { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) |
| 15 |
14
|
oveq2d |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑝 ∈ 𝒫 ℕ0 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝑥 ∧ ( 𝑛 − 𝑚 ) ∈ 𝑦 ) } ) = ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) |
| 16 |
15
|
mpoeq3dva |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝑥 ∧ ( 𝑛 − 𝑚 ) ∈ 𝑦 ) } ) ) = ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) ) |
| 17 |
16
|
seqeq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝑥 ∧ ( 𝑛 − 𝑚 ) ∈ 𝑦 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) = seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ) |
| 18 |
17 3
|
eqtr4di |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝑥 ∧ ( 𝑛 − 𝑚 ) ∈ 𝑦 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) = 𝑃 ) |
| 19 |
18
|
fveq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝑥 ∧ ( 𝑛 − 𝑚 ) ∈ 𝑦 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
| 20 |
19
|
eleq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑘 ∈ ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝑥 ∧ ( 𝑛 − 𝑚 ) ∈ 𝑦 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) ↔ 𝑘 ∈ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 21 |
20
|
rabbidv |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → { 𝑘 ∈ ℕ0 ∣ 𝑘 ∈ ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝑥 ∧ ( 𝑛 − 𝑚 ) ∈ 𝑦 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) } = { 𝑘 ∈ ℕ0 ∣ 𝑘 ∈ ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) |
| 22 |
|
df-smu |
⊢ smul = ( 𝑥 ∈ 𝒫 ℕ0 , 𝑦 ∈ 𝒫 ℕ0 ↦ { 𝑘 ∈ ℕ0 ∣ 𝑘 ∈ ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝑥 ∧ ( 𝑛 − 𝑚 ) ∈ 𝑦 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) } ) |
| 23 |
4
|
rabex |
⊢ { 𝑘 ∈ ℕ0 ∣ 𝑘 ∈ ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ V |
| 24 |
21 22 23
|
ovmpoa |
⊢ ( ( 𝐴 ∈ 𝒫 ℕ0 ∧ 𝐵 ∈ 𝒫 ℕ0 ) → ( 𝐴 smul 𝐵 ) = { 𝑘 ∈ ℕ0 ∣ 𝑘 ∈ ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) |
| 25 |
6 8 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 smul 𝐵 ) = { 𝑘 ∈ ℕ0 ∣ 𝑘 ∈ ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) |