| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smumullem.a |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 2 |
|
smumullem.b |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 3 |
|
smumullem.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 4 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 0 ..^ 𝑥 ) = ( 0 ..^ 0 ) ) |
| 5 |
|
fzo0 |
⊢ ( 0 ..^ 0 ) = ∅ |
| 6 |
4 5
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( 0 ..^ 𝑥 ) = ∅ ) |
| 7 |
6
|
ineq2d |
⊢ ( 𝑥 = 0 → ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑥 ) ) = ( ( bits ‘ 𝐴 ) ∩ ∅ ) ) |
| 8 |
|
in0 |
⊢ ( ( bits ‘ 𝐴 ) ∩ ∅ ) = ∅ |
| 9 |
7 8
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑥 ) ) = ∅ ) |
| 10 |
9
|
oveq1d |
⊢ ( 𝑥 = 0 → ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑥 ) ) smul ( bits ‘ 𝐵 ) ) = ( ∅ smul ( bits ‘ 𝐵 ) ) ) |
| 11 |
|
bitsss |
⊢ ( bits ‘ 𝐵 ) ⊆ ℕ0 |
| 12 |
|
smu02 |
⊢ ( ( bits ‘ 𝐵 ) ⊆ ℕ0 → ( ∅ smul ( bits ‘ 𝐵 ) ) = ∅ ) |
| 13 |
11 12
|
ax-mp |
⊢ ( ∅ smul ( bits ‘ 𝐵 ) ) = ∅ |
| 14 |
10 13
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑥 ) ) smul ( bits ‘ 𝐵 ) ) = ∅ ) |
| 15 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 0 ) ) |
| 16 |
|
2cn |
⊢ 2 ∈ ℂ |
| 17 |
|
exp0 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 0 ) = 1 ) |
| 18 |
16 17
|
ax-mp |
⊢ ( 2 ↑ 0 ) = 1 |
| 19 |
15 18
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( 2 ↑ 𝑥 ) = 1 ) |
| 20 |
19
|
oveq2d |
⊢ ( 𝑥 = 0 → ( 𝐴 mod ( 2 ↑ 𝑥 ) ) = ( 𝐴 mod 1 ) ) |
| 21 |
20
|
fvoveq1d |
⊢ ( 𝑥 = 0 → ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑥 ) ) · 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod 1 ) · 𝐵 ) ) ) |
| 22 |
14 21
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑥 ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑥 ) ) · 𝐵 ) ) ↔ ∅ = ( bits ‘ ( ( 𝐴 mod 1 ) · 𝐵 ) ) ) ) |
| 23 |
22
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝜑 → ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑥 ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑥 ) ) · 𝐵 ) ) ) ↔ ( 𝜑 → ∅ = ( bits ‘ ( ( 𝐴 mod 1 ) · 𝐵 ) ) ) ) ) |
| 24 |
|
oveq2 |
⊢ ( 𝑥 = 𝑘 → ( 0 ..^ 𝑥 ) = ( 0 ..^ 𝑘 ) ) |
| 25 |
24
|
ineq2d |
⊢ ( 𝑥 = 𝑘 → ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑥 ) ) = ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑘 ) ) ) |
| 26 |
25
|
oveq1d |
⊢ ( 𝑥 = 𝑘 → ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑥 ) ) smul ( bits ‘ 𝐵 ) ) = ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑘 ) ) smul ( bits ‘ 𝐵 ) ) ) |
| 27 |
|
oveq2 |
⊢ ( 𝑥 = 𝑘 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 𝑘 ) ) |
| 28 |
27
|
oveq2d |
⊢ ( 𝑥 = 𝑘 → ( 𝐴 mod ( 2 ↑ 𝑥 ) ) = ( 𝐴 mod ( 2 ↑ 𝑘 ) ) ) |
| 29 |
28
|
fvoveq1d |
⊢ ( 𝑥 = 𝑘 → ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑥 ) ) · 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) ) ) |
| 30 |
26 29
|
eqeq12d |
⊢ ( 𝑥 = 𝑘 → ( ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑥 ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑥 ) ) · 𝐵 ) ) ↔ ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑘 ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) ) ) ) |
| 31 |
30
|
imbi2d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝜑 → ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑥 ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑥 ) ) · 𝐵 ) ) ) ↔ ( 𝜑 → ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑘 ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) ) ) ) ) |
| 32 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 0 ..^ 𝑥 ) = ( 0 ..^ ( 𝑘 + 1 ) ) ) |
| 33 |
32
|
ineq2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑥 ) ) = ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) ) |
| 34 |
33
|
oveq1d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑥 ) ) smul ( bits ‘ 𝐵 ) ) = ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) smul ( bits ‘ 𝐵 ) ) ) |
| 35 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 2 ↑ 𝑥 ) = ( 2 ↑ ( 𝑘 + 1 ) ) ) |
| 36 |
35
|
oveq2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐴 mod ( 2 ↑ 𝑥 ) ) = ( 𝐴 mod ( 2 ↑ ( 𝑘 + 1 ) ) ) ) |
| 37 |
36
|
fvoveq1d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑥 ) ) · 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ ( 𝑘 + 1 ) ) ) · 𝐵 ) ) ) |
| 38 |
34 37
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑥 ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑥 ) ) · 𝐵 ) ) ↔ ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ ( 𝑘 + 1 ) ) ) · 𝐵 ) ) ) ) |
| 39 |
38
|
imbi2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝜑 → ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑥 ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑥 ) ) · 𝐵 ) ) ) ↔ ( 𝜑 → ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ ( 𝑘 + 1 ) ) ) · 𝐵 ) ) ) ) ) |
| 40 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 0 ..^ 𝑥 ) = ( 0 ..^ 𝑁 ) ) |
| 41 |
40
|
ineq2d |
⊢ ( 𝑥 = 𝑁 → ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑥 ) ) = ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑁 ) ) ) |
| 42 |
41
|
oveq1d |
⊢ ( 𝑥 = 𝑁 → ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑥 ) ) smul ( bits ‘ 𝐵 ) ) = ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑁 ) ) smul ( bits ‘ 𝐵 ) ) ) |
| 43 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 𝑁 ) ) |
| 44 |
43
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝐴 mod ( 2 ↑ 𝑥 ) ) = ( 𝐴 mod ( 2 ↑ 𝑁 ) ) ) |
| 45 |
44
|
fvoveq1d |
⊢ ( 𝑥 = 𝑁 → ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑥 ) ) · 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑁 ) ) · 𝐵 ) ) ) |
| 46 |
42 45
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑥 ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑥 ) ) · 𝐵 ) ) ↔ ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑁 ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑁 ) ) · 𝐵 ) ) ) ) |
| 47 |
46
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑥 ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑥 ) ) · 𝐵 ) ) ) ↔ ( 𝜑 → ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑁 ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑁 ) ) · 𝐵 ) ) ) ) ) |
| 48 |
|
zmod10 |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 mod 1 ) = 0 ) |
| 49 |
1 48
|
syl |
⊢ ( 𝜑 → ( 𝐴 mod 1 ) = 0 ) |
| 50 |
49
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 mod 1 ) · 𝐵 ) = ( 0 · 𝐵 ) ) |
| 51 |
2
|
zcnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 52 |
51
|
mul02d |
⊢ ( 𝜑 → ( 0 · 𝐵 ) = 0 ) |
| 53 |
50 52
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 mod 1 ) · 𝐵 ) = 0 ) |
| 54 |
53
|
fveq2d |
⊢ ( 𝜑 → ( bits ‘ ( ( 𝐴 mod 1 ) · 𝐵 ) ) = ( bits ‘ 0 ) ) |
| 55 |
|
0bits |
⊢ ( bits ‘ 0 ) = ∅ |
| 56 |
54 55
|
eqtr2di |
⊢ ( 𝜑 → ∅ = ( bits ‘ ( ( 𝐴 mod 1 ) · 𝐵 ) ) ) |
| 57 |
|
oveq1 |
⊢ ( ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑘 ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) ) → ( ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑘 ) ) smul ( bits ‘ 𝐵 ) ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ ( bits ‘ 𝐴 ) ∧ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) ) } ) = ( ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ ( bits ‘ 𝐴 ) ∧ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) ) } ) ) |
| 58 |
|
bitsss |
⊢ ( bits ‘ 𝐴 ) ⊆ ℕ0 |
| 59 |
58
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( bits ‘ 𝐴 ) ⊆ ℕ0 ) |
| 60 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( bits ‘ 𝐵 ) ⊆ ℕ0 ) |
| 61 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 62 |
59 60 61
|
smup1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) smul ( bits ‘ 𝐵 ) ) = ( ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑘 ) ) smul ( bits ‘ 𝐵 ) ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ ( bits ‘ 𝐴 ) ∧ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) ) } ) ) |
| 63 |
|
bitsinv1lem |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 mod ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) + if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ) ) |
| 64 |
1 63
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 mod ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) + if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ) ) |
| 65 |
64
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 mod ( 2 ↑ ( 𝑘 + 1 ) ) ) · 𝐵 ) = ( ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) + if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ) · 𝐵 ) ) |
| 66 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℤ ) |
| 67 |
|
2nn |
⊢ 2 ∈ ℕ |
| 68 |
67
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 2 ∈ ℕ ) |
| 69 |
68 61
|
nnexpcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℕ ) |
| 70 |
66 69
|
zmodcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 mod ( 2 ↑ 𝑘 ) ) ∈ ℕ0 ) |
| 71 |
70
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 mod ( 2 ↑ 𝑘 ) ) ∈ ℂ ) |
| 72 |
69
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℕ0 ) |
| 73 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 74 |
|
ifcl |
⊢ ( ( ( 2 ↑ 𝑘 ) ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ∈ ℕ0 ) |
| 75 |
72 73 74
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ∈ ℕ0 ) |
| 76 |
75
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ∈ ℂ ) |
| 77 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
| 78 |
71 76 77
|
adddird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) + if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ) · 𝐵 ) = ( ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) + ( if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) · 𝐵 ) ) ) |
| 79 |
76 77
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) · 𝐵 ) = ( 𝐵 · if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ) ) |
| 80 |
79
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) + ( if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) · 𝐵 ) ) = ( ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) + ( 𝐵 · if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ) ) ) |
| 81 |
65 78 80
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 mod ( 2 ↑ ( 𝑘 + 1 ) ) ) · 𝐵 ) = ( ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) + ( 𝐵 · if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ) ) ) |
| 82 |
81
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( bits ‘ ( ( 𝐴 mod ( 2 ↑ ( 𝑘 + 1 ) ) ) · 𝐵 ) ) = ( bits ‘ ( ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) + ( 𝐵 · if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ) ) ) ) |
| 83 |
70
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 mod ( 2 ↑ 𝑘 ) ) ∈ ℤ ) |
| 84 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℤ ) |
| 85 |
83 84
|
zmulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) ∈ ℤ ) |
| 86 |
75
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ∈ ℤ ) |
| 87 |
84 86
|
zmulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 · if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ) ∈ ℤ ) |
| 88 |
|
sadadd |
⊢ ( ( ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) ∈ ℤ ∧ ( 𝐵 · if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ) ∈ ℤ ) → ( ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) ) sadd ( bits ‘ ( 𝐵 · if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ) ) ) = ( bits ‘ ( ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) + ( 𝐵 · if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ) ) ) ) |
| 89 |
85 87 88
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) ) sadd ( bits ‘ ( 𝐵 · if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ) ) ) = ( bits ‘ ( ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) + ( 𝐵 · if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ) ) ) ) |
| 90 |
|
oveq2 |
⊢ ( ( 2 ↑ 𝑘 ) = if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) → ( 𝐵 · ( 2 ↑ 𝑘 ) ) = ( 𝐵 · if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ) ) |
| 91 |
90
|
fveqeq2d |
⊢ ( ( 2 ↑ 𝑘 ) = if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) → ( ( bits ‘ ( 𝐵 · ( 2 ↑ 𝑘 ) ) ) = { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ ( bits ‘ 𝐴 ) ∧ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) ) } ↔ ( bits ‘ ( 𝐵 · if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ) ) = { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ ( bits ‘ 𝐴 ) ∧ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) ) } ) ) |
| 92 |
|
oveq2 |
⊢ ( 0 = if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) → ( 𝐵 · 0 ) = ( 𝐵 · if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ) ) |
| 93 |
92
|
fveqeq2d |
⊢ ( 0 = if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) → ( ( bits ‘ ( 𝐵 · 0 ) ) = { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ ( bits ‘ 𝐴 ) ∧ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) ) } ↔ ( bits ‘ ( 𝐵 · if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ) ) = { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ ( bits ‘ 𝐴 ) ∧ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) ) } ) ) |
| 94 |
|
bitsshft |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → { 𝑛 ∈ ℕ0 ∣ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) } = ( bits ‘ ( 𝐵 · ( 2 ↑ 𝑘 ) ) ) ) |
| 95 |
2 94
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → { 𝑛 ∈ ℕ0 ∣ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) } = ( bits ‘ ( 𝐵 · ( 2 ↑ 𝑘 ) ) ) ) |
| 96 |
|
ibar |
⊢ ( 𝑘 ∈ ( bits ‘ 𝐴 ) → ( ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) ↔ ( 𝑘 ∈ ( bits ‘ 𝐴 ) ∧ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) ) ) ) |
| 97 |
96
|
rabbidv |
⊢ ( 𝑘 ∈ ( bits ‘ 𝐴 ) → { 𝑛 ∈ ℕ0 ∣ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) } = { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ ( bits ‘ 𝐴 ) ∧ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) ) } ) |
| 98 |
95 97
|
sylan9req |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 ∈ ( bits ‘ 𝐴 ) ) → ( bits ‘ ( 𝐵 · ( 2 ↑ 𝑘 ) ) ) = { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ ( bits ‘ 𝐴 ) ∧ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) ) } ) |
| 99 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ∈ ( bits ‘ 𝐴 ) ) → 𝐵 ∈ ℂ ) |
| 100 |
99
|
mul01d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ∈ ( bits ‘ 𝐴 ) ) → ( 𝐵 · 0 ) = 0 ) |
| 101 |
100
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ∈ ( bits ‘ 𝐴 ) ) → ( bits ‘ ( 𝐵 · 0 ) ) = ( bits ‘ 0 ) ) |
| 102 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ∈ ( bits ‘ 𝐴 ) ) → ¬ 𝑘 ∈ ( bits ‘ 𝐴 ) ) |
| 103 |
102
|
intnanrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ∈ ( bits ‘ 𝐴 ) ) → ¬ ( 𝑘 ∈ ( bits ‘ 𝐴 ) ∧ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) ) ) |
| 104 |
103
|
ralrimivw |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ∈ ( bits ‘ 𝐴 ) ) → ∀ 𝑛 ∈ ℕ0 ¬ ( 𝑘 ∈ ( bits ‘ 𝐴 ) ∧ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) ) ) |
| 105 |
|
rabeq0 |
⊢ ( { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ ( bits ‘ 𝐴 ) ∧ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) ) } = ∅ ↔ ∀ 𝑛 ∈ ℕ0 ¬ ( 𝑘 ∈ ( bits ‘ 𝐴 ) ∧ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) ) ) |
| 106 |
104 105
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ∈ ( bits ‘ 𝐴 ) ) → { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ ( bits ‘ 𝐴 ) ∧ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) ) } = ∅ ) |
| 107 |
55 101 106
|
3eqtr4a |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 ∈ ( bits ‘ 𝐴 ) ) → ( bits ‘ ( 𝐵 · 0 ) ) = { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ ( bits ‘ 𝐴 ) ∧ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) ) } ) |
| 108 |
91 93 98 107
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( bits ‘ ( 𝐵 · if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ) ) = { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ ( bits ‘ 𝐴 ) ∧ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) ) } ) |
| 109 |
108
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) ) sadd ( bits ‘ ( 𝐵 · if ( 𝑘 ∈ ( bits ‘ 𝐴 ) , ( 2 ↑ 𝑘 ) , 0 ) ) ) ) = ( ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ ( bits ‘ 𝐴 ) ∧ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) ) } ) ) |
| 110 |
82 89 109
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( bits ‘ ( ( 𝐴 mod ( 2 ↑ ( 𝑘 + 1 ) ) ) · 𝐵 ) ) = ( ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ ( bits ‘ 𝐴 ) ∧ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) ) } ) ) |
| 111 |
62 110
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ ( 𝑘 + 1 ) ) ) · 𝐵 ) ) ↔ ( ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑘 ) ) smul ( bits ‘ 𝐵 ) ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ ( bits ‘ 𝐴 ) ∧ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) ) } ) = ( ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ ( bits ‘ 𝐴 ) ∧ ( 𝑛 − 𝑘 ) ∈ ( bits ‘ 𝐵 ) ) } ) ) ) |
| 112 |
57 111
|
imbitrrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑘 ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) ) → ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ ( 𝑘 + 1 ) ) ) · 𝐵 ) ) ) ) |
| 113 |
112
|
expcom |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝜑 → ( ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑘 ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) ) → ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ ( 𝑘 + 1 ) ) ) · 𝐵 ) ) ) ) ) |
| 114 |
113
|
a2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝜑 → ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑘 ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑘 ) ) · 𝐵 ) ) ) → ( 𝜑 → ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ ( 𝑘 + 1 ) ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ ( 𝑘 + 1 ) ) ) · 𝐵 ) ) ) ) ) |
| 115 |
23 31 39 47 56 114
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝜑 → ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑁 ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑁 ) ) · 𝐵 ) ) ) ) |
| 116 |
3 115
|
mpcom |
⊢ ( 𝜑 → ( ( ( bits ‘ 𝐴 ) ∩ ( 0 ..^ 𝑁 ) ) smul ( bits ‘ 𝐵 ) ) = ( bits ‘ ( ( 𝐴 mod ( 2 ↑ 𝑁 ) ) · 𝐵 ) ) ) |