| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smuval.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ0 ) |
| 2 |
|
smuval.b |
⊢ ( 𝜑 → 𝐵 ⊆ ℕ0 ) |
| 3 |
|
smuval.p |
⊢ 𝑃 = seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) |
| 4 |
|
smuval.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 5 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 6 |
4 5
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 7 |
|
seqp1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑁 ) ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ‘ ( 𝑁 + 1 ) ) ) ) |
| 8 |
6 7
|
syl |
⊢ ( 𝜑 → ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑁 ) ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ‘ ( 𝑁 + 1 ) ) ) ) |
| 9 |
3
|
fveq1i |
⊢ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ ( 𝑁 + 1 ) ) |
| 10 |
3
|
fveq1i |
⊢ ( 𝑃 ‘ 𝑁 ) = ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑁 ) |
| 11 |
10
|
oveq1i |
⊢ ( ( 𝑃 ‘ 𝑁 ) ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑁 ) ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ‘ ( 𝑁 + 1 ) ) ) |
| 12 |
8 9 11
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝑃 ‘ ( 𝑁 + 1 ) ) = ( ( 𝑃 ‘ 𝑁 ) ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ‘ ( 𝑁 + 1 ) ) ) ) |
| 13 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 15 |
4 14
|
nn0addcld |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 16 |
|
eqeq1 |
⊢ ( 𝑛 = ( 𝑁 + 1 ) → ( 𝑛 = 0 ↔ ( 𝑁 + 1 ) = 0 ) ) |
| 17 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑁 + 1 ) → ( 𝑛 − 1 ) = ( ( 𝑁 + 1 ) − 1 ) ) |
| 18 |
16 17
|
ifbieq2d |
⊢ ( 𝑛 = ( 𝑁 + 1 ) → if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) = if ( ( 𝑁 + 1 ) = 0 , ∅ , ( ( 𝑁 + 1 ) − 1 ) ) ) |
| 19 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) |
| 20 |
|
0ex |
⊢ ∅ ∈ V |
| 21 |
|
ovex |
⊢ ( ( 𝑁 + 1 ) − 1 ) ∈ V |
| 22 |
20 21
|
ifex |
⊢ if ( ( 𝑁 + 1 ) = 0 , ∅ , ( ( 𝑁 + 1 ) − 1 ) ) ∈ V |
| 23 |
18 19 22
|
fvmpt |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ‘ ( 𝑁 + 1 ) ) = if ( ( 𝑁 + 1 ) = 0 , ∅ , ( ( 𝑁 + 1 ) − 1 ) ) ) |
| 24 |
15 23
|
syl |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ‘ ( 𝑁 + 1 ) ) = if ( ( 𝑁 + 1 ) = 0 , ∅ , ( ( 𝑁 + 1 ) − 1 ) ) ) |
| 25 |
|
nn0p1nn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) |
| 26 |
4 25
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ ) |
| 27 |
26
|
nnne0d |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ≠ 0 ) |
| 28 |
|
ifnefalse |
⊢ ( ( 𝑁 + 1 ) ≠ 0 → if ( ( 𝑁 + 1 ) = 0 , ∅ , ( ( 𝑁 + 1 ) − 1 ) ) = ( ( 𝑁 + 1 ) − 1 ) ) |
| 29 |
27 28
|
syl |
⊢ ( 𝜑 → if ( ( 𝑁 + 1 ) = 0 , ∅ , ( ( 𝑁 + 1 ) − 1 ) ) = ( ( 𝑁 + 1 ) − 1 ) ) |
| 30 |
4
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 31 |
14
|
nn0cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 32 |
30 31
|
pncand |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 33 |
24 29 32
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ‘ ( 𝑁 + 1 ) ) = 𝑁 ) |
| 34 |
33
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝑁 ) ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ‘ ( 𝑁 + 1 ) ) ) = ( ( 𝑃 ‘ 𝑁 ) ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) 𝑁 ) ) |
| 35 |
1 2 3
|
smupf |
⊢ ( 𝜑 → 𝑃 : ℕ0 ⟶ 𝒫 ℕ0 ) |
| 36 |
35 4
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑁 ) ∈ 𝒫 ℕ0 ) |
| 37 |
|
simpl |
⊢ ( ( 𝑥 = ( 𝑃 ‘ 𝑁 ) ∧ 𝑦 = 𝑁 ) → 𝑥 = ( 𝑃 ‘ 𝑁 ) ) |
| 38 |
|
simpr |
⊢ ( ( 𝑥 = ( 𝑃 ‘ 𝑁 ) ∧ 𝑦 = 𝑁 ) → 𝑦 = 𝑁 ) |
| 39 |
38
|
eleq1d |
⊢ ( ( 𝑥 = ( 𝑃 ‘ 𝑁 ) ∧ 𝑦 = 𝑁 ) → ( 𝑦 ∈ 𝐴 ↔ 𝑁 ∈ 𝐴 ) ) |
| 40 |
38
|
oveq2d |
⊢ ( ( 𝑥 = ( 𝑃 ‘ 𝑁 ) ∧ 𝑦 = 𝑁 ) → ( 𝑘 − 𝑦 ) = ( 𝑘 − 𝑁 ) ) |
| 41 |
40
|
eleq1d |
⊢ ( ( 𝑥 = ( 𝑃 ‘ 𝑁 ) ∧ 𝑦 = 𝑁 ) → ( ( 𝑘 − 𝑦 ) ∈ 𝐵 ↔ ( 𝑘 − 𝑁 ) ∈ 𝐵 ) ) |
| 42 |
39 41
|
anbi12d |
⊢ ( ( 𝑥 = ( 𝑃 ‘ 𝑁 ) ∧ 𝑦 = 𝑁 ) → ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑘 − 𝑦 ) ∈ 𝐵 ) ↔ ( 𝑁 ∈ 𝐴 ∧ ( 𝑘 − 𝑁 ) ∈ 𝐵 ) ) ) |
| 43 |
42
|
rabbidv |
⊢ ( ( 𝑥 = ( 𝑃 ‘ 𝑁 ) ∧ 𝑦 = 𝑁 ) → { 𝑘 ∈ ℕ0 ∣ ( 𝑦 ∈ 𝐴 ∧ ( 𝑘 − 𝑦 ) ∈ 𝐵 ) } = { 𝑘 ∈ ℕ0 ∣ ( 𝑁 ∈ 𝐴 ∧ ( 𝑘 − 𝑁 ) ∈ 𝐵 ) } ) |
| 44 |
|
oveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 − 𝑁 ) = ( 𝑛 − 𝑁 ) ) |
| 45 |
44
|
eleq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑘 − 𝑁 ) ∈ 𝐵 ↔ ( 𝑛 − 𝑁 ) ∈ 𝐵 ) ) |
| 46 |
45
|
anbi2d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑁 ∈ 𝐴 ∧ ( 𝑘 − 𝑁 ) ∈ 𝐵 ) ↔ ( 𝑁 ∈ 𝐴 ∧ ( 𝑛 − 𝑁 ) ∈ 𝐵 ) ) ) |
| 47 |
46
|
cbvrabv |
⊢ { 𝑘 ∈ ℕ0 ∣ ( 𝑁 ∈ 𝐴 ∧ ( 𝑘 − 𝑁 ) ∈ 𝐵 ) } = { 𝑛 ∈ ℕ0 ∣ ( 𝑁 ∈ 𝐴 ∧ ( 𝑛 − 𝑁 ) ∈ 𝐵 ) } |
| 48 |
43 47
|
eqtrdi |
⊢ ( ( 𝑥 = ( 𝑃 ‘ 𝑁 ) ∧ 𝑦 = 𝑁 ) → { 𝑘 ∈ ℕ0 ∣ ( 𝑦 ∈ 𝐴 ∧ ( 𝑘 − 𝑦 ) ∈ 𝐵 ) } = { 𝑛 ∈ ℕ0 ∣ ( 𝑁 ∈ 𝐴 ∧ ( 𝑛 − 𝑁 ) ∈ 𝐵 ) } ) |
| 49 |
37 48
|
oveq12d |
⊢ ( ( 𝑥 = ( 𝑃 ‘ 𝑁 ) ∧ 𝑦 = 𝑁 ) → ( 𝑥 sadd { 𝑘 ∈ ℕ0 ∣ ( 𝑦 ∈ 𝐴 ∧ ( 𝑘 − 𝑦 ) ∈ 𝐵 ) } ) = ( ( 𝑃 ‘ 𝑁 ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑁 ∈ 𝐴 ∧ ( 𝑛 − 𝑁 ) ∈ 𝐵 ) } ) ) |
| 50 |
|
oveq1 |
⊢ ( 𝑝 = 𝑥 → ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) = ( 𝑥 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) |
| 51 |
|
eleq1w |
⊢ ( 𝑚 = 𝑦 → ( 𝑚 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 52 |
|
oveq2 |
⊢ ( 𝑚 = 𝑦 → ( 𝑛 − 𝑚 ) = ( 𝑛 − 𝑦 ) ) |
| 53 |
52
|
eleq1d |
⊢ ( 𝑚 = 𝑦 → ( ( 𝑛 − 𝑚 ) ∈ 𝐵 ↔ ( 𝑛 − 𝑦 ) ∈ 𝐵 ) ) |
| 54 |
51 53
|
anbi12d |
⊢ ( 𝑚 = 𝑦 → ( ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ( 𝑛 − 𝑦 ) ∈ 𝐵 ) ) ) |
| 55 |
54
|
rabbidv |
⊢ ( 𝑚 = 𝑦 → { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } = { 𝑛 ∈ ℕ0 ∣ ( 𝑦 ∈ 𝐴 ∧ ( 𝑛 − 𝑦 ) ∈ 𝐵 ) } ) |
| 56 |
|
oveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 − 𝑦 ) = ( 𝑛 − 𝑦 ) ) |
| 57 |
56
|
eleq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑘 − 𝑦 ) ∈ 𝐵 ↔ ( 𝑛 − 𝑦 ) ∈ 𝐵 ) ) |
| 58 |
57
|
anbi2d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑘 − 𝑦 ) ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ( 𝑛 − 𝑦 ) ∈ 𝐵 ) ) ) |
| 59 |
58
|
cbvrabv |
⊢ { 𝑘 ∈ ℕ0 ∣ ( 𝑦 ∈ 𝐴 ∧ ( 𝑘 − 𝑦 ) ∈ 𝐵 ) } = { 𝑛 ∈ ℕ0 ∣ ( 𝑦 ∈ 𝐴 ∧ ( 𝑛 − 𝑦 ) ∈ 𝐵 ) } |
| 60 |
55 59
|
eqtr4di |
⊢ ( 𝑚 = 𝑦 → { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } = { 𝑘 ∈ ℕ0 ∣ ( 𝑦 ∈ 𝐴 ∧ ( 𝑘 − 𝑦 ) ∈ 𝐵 ) } ) |
| 61 |
60
|
oveq2d |
⊢ ( 𝑚 = 𝑦 → ( 𝑥 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) = ( 𝑥 sadd { 𝑘 ∈ ℕ0 ∣ ( 𝑦 ∈ 𝐴 ∧ ( 𝑘 − 𝑦 ) ∈ 𝐵 ) } ) ) |
| 62 |
50 61
|
cbvmpov |
⊢ ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) = ( 𝑥 ∈ 𝒫 ℕ0 , 𝑦 ∈ ℕ0 ↦ ( 𝑥 sadd { 𝑘 ∈ ℕ0 ∣ ( 𝑦 ∈ 𝐴 ∧ ( 𝑘 − 𝑦 ) ∈ 𝐵 ) } ) ) |
| 63 |
|
ovex |
⊢ ( ( 𝑃 ‘ 𝑁 ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑁 ∈ 𝐴 ∧ ( 𝑛 − 𝑁 ) ∈ 𝐵 ) } ) ∈ V |
| 64 |
49 62 63
|
ovmpoa |
⊢ ( ( ( 𝑃 ‘ 𝑁 ) ∈ 𝒫 ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑃 ‘ 𝑁 ) ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) 𝑁 ) = ( ( 𝑃 ‘ 𝑁 ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑁 ∈ 𝐴 ∧ ( 𝑛 − 𝑁 ) ∈ 𝐵 ) } ) ) |
| 65 |
36 4 64
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝑁 ) ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) 𝑁 ) = ( ( 𝑃 ‘ 𝑁 ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑁 ∈ 𝐴 ∧ ( 𝑛 − 𝑁 ) ∈ 𝐵 ) } ) ) |
| 66 |
12 34 65
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑃 ‘ ( 𝑁 + 1 ) ) = ( ( 𝑃 ‘ 𝑁 ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑁 ∈ 𝐴 ∧ ( 𝑛 − 𝑁 ) ∈ 𝐵 ) } ) ) |