| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smuval.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ0 ) |
| 2 |
|
smuval.b |
⊢ ( 𝜑 → 𝐵 ⊆ ℕ0 ) |
| 3 |
|
smuval.p |
⊢ 𝑃 = seq 0 ( ( 𝑝 ∈ 𝒫 ℕ0 , 𝑚 ∈ ℕ0 ↦ ( 𝑝 sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑚 ∈ 𝐴 ∧ ( 𝑛 − 𝑚 ) ∈ 𝐵 ) } ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) |
| 4 |
|
smuval.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 5 |
|
smupvallem.a |
⊢ ( 𝜑 → 𝐴 ⊆ ( 0 ..^ 𝑁 ) ) |
| 6 |
|
smupvallem.m |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 7 |
1 2 3
|
smupf |
⊢ ( 𝜑 → 𝑃 : ℕ0 ⟶ 𝒫 ℕ0 ) |
| 8 |
|
eluznn0 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ℕ0 ) |
| 9 |
4 6 8
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 10 |
7 9
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑀 ) ∈ 𝒫 ℕ0 ) |
| 11 |
10
|
elpwid |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑀 ) ⊆ ℕ0 ) |
| 12 |
11
|
sseld |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝑃 ‘ 𝑀 ) → 𝑘 ∈ ℕ0 ) ) |
| 13 |
1 2 3
|
smufval |
⊢ ( 𝜑 → ( 𝐴 smul 𝐵 ) = { 𝑘 ∈ ℕ0 ∣ 𝑘 ∈ ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) |
| 14 |
|
ssrab2 |
⊢ { 𝑘 ∈ ℕ0 ∣ 𝑘 ∈ ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ℕ0 |
| 15 |
13 14
|
eqsstrdi |
⊢ ( 𝜑 → ( 𝐴 smul 𝐵 ) ⊆ ℕ0 ) |
| 16 |
15
|
sseld |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐴 smul 𝐵 ) → 𝑘 ∈ ℕ0 ) ) |
| 17 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) → 𝐴 ⊆ ℕ0 ) |
| 18 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) → 𝐵 ⊆ ℕ0 ) |
| 19 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 21 |
|
uztrn |
⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) → 𝑀 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) |
| 22 |
20 21
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) → 𝑀 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) |
| 23 |
17 18 3 19 22
|
smuval2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) → ( 𝑘 ∈ ( 𝐴 smul 𝐵 ) ↔ 𝑘 ∈ ( 𝑃 ‘ 𝑀 ) ) ) |
| 24 |
23
|
bicomd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) → ( 𝑘 ∈ ( 𝑃 ‘ 𝑀 ) ↔ 𝑘 ∈ ( 𝐴 smul 𝐵 ) ) ) |
| 25 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 26 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝜑 ) |
| 27 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑁 ) ↔ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ 𝑁 ) ) ) |
| 28 |
27
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑁 ) ) ↔ ( 𝜑 → ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ 𝑁 ) ) ) ) |
| 29 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑘 → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑁 ) ↔ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑁 ) ) ) |
| 30 |
29
|
imbi2d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝜑 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑁 ) ) ↔ ( 𝜑 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑁 ) ) ) ) |
| 31 |
|
fveqeq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑁 ) ↔ ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ 𝑁 ) ) ) |
| 32 |
31
|
imbi2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝜑 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑁 ) ) ↔ ( 𝜑 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ 𝑁 ) ) ) ) |
| 33 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑀 → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑁 ) ↔ ( 𝑃 ‘ 𝑀 ) = ( 𝑃 ‘ 𝑁 ) ) ) |
| 34 |
33
|
imbi2d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝜑 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑁 ) ) ↔ ( 𝜑 → ( 𝑃 ‘ 𝑀 ) = ( 𝑃 ‘ 𝑁 ) ) ) ) |
| 35 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ 𝑁 ) ) |
| 36 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝐴 ⊆ ℕ0 ) |
| 37 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝐵 ⊆ ℕ0 ) |
| 38 |
|
eluznn0 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 39 |
4 38
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 40 |
36 37 3 39
|
smupp1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 ‘ 𝑘 ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ 𝐴 ∧ ( 𝑛 − 𝑘 ) ∈ 𝐵 ) } ) ) |
| 41 |
4
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ℝ ) |
| 43 |
39
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ ℝ ) |
| 44 |
|
eluzle |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ≤ 𝑘 ) |
| 45 |
44
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ≤ 𝑘 ) |
| 46 |
42 43 45
|
lensymd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ¬ 𝑘 < 𝑁 ) |
| 47 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝐴 ⊆ ( 0 ..^ 𝑁 ) ) |
| 48 |
47
|
sseld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑘 ∈ 𝐴 → 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 49 |
|
elfzolt2 |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → 𝑘 < 𝑁 ) |
| 50 |
48 49
|
syl6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑘 ∈ 𝐴 → 𝑘 < 𝑁 ) ) |
| 51 |
50
|
adantrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑘 ∈ 𝐴 ∧ ( 𝑛 − 𝑘 ) ∈ 𝐵 ) → 𝑘 < 𝑁 ) ) |
| 52 |
46 51
|
mtod |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝑛 − 𝑘 ) ∈ 𝐵 ) ) |
| 53 |
52
|
ralrimivw |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ∀ 𝑛 ∈ ℕ0 ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝑛 − 𝑘 ) ∈ 𝐵 ) ) |
| 54 |
|
rabeq0 |
⊢ ( { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ 𝐴 ∧ ( 𝑛 − 𝑘 ) ∈ 𝐵 ) } = ∅ ↔ ∀ 𝑛 ∈ ℕ0 ¬ ( 𝑘 ∈ 𝐴 ∧ ( 𝑛 − 𝑘 ) ∈ 𝐵 ) ) |
| 55 |
53 54
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ 𝐴 ∧ ( 𝑛 − 𝑘 ) ∈ 𝐵 ) } = ∅ ) |
| 56 |
55
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑃 ‘ 𝑘 ) sadd { 𝑛 ∈ ℕ0 ∣ ( 𝑘 ∈ 𝐴 ∧ ( 𝑛 − 𝑘 ) ∈ 𝐵 ) } ) = ( ( 𝑃 ‘ 𝑘 ) sadd ∅ ) ) |
| 57 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑃 : ℕ0 ⟶ 𝒫 ℕ0 ) |
| 58 |
57 39
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑃 ‘ 𝑘 ) ∈ 𝒫 ℕ0 ) |
| 59 |
58
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑃 ‘ 𝑘 ) ⊆ ℕ0 ) |
| 60 |
|
sadid1 |
⊢ ( ( 𝑃 ‘ 𝑘 ) ⊆ ℕ0 → ( ( 𝑃 ‘ 𝑘 ) sadd ∅ ) = ( 𝑃 ‘ 𝑘 ) ) |
| 61 |
59 60
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑃 ‘ 𝑘 ) sadd ∅ ) = ( 𝑃 ‘ 𝑘 ) ) |
| 62 |
40 56 61
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ 𝑘 ) ) |
| 63 |
62
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ 𝑁 ) ↔ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑁 ) ) ) |
| 64 |
63
|
biimprd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑁 ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ 𝑁 ) ) ) |
| 65 |
64
|
expcom |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝜑 → ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑁 ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ 𝑁 ) ) ) ) |
| 66 |
65
|
a2d |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ( 𝜑 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑁 ) ) → ( 𝜑 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ 𝑁 ) ) ) ) |
| 67 |
28 30 32 34 35 66
|
uzind4i |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝜑 → ( 𝑃 ‘ 𝑀 ) = ( 𝑃 ‘ 𝑁 ) ) ) |
| 68 |
25 26 67
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑃 ‘ 𝑀 ) = ( 𝑃 ‘ 𝑁 ) ) |
| 69 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 70 |
28 30 32 32 35 66
|
uzind4i |
⊢ ( ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝜑 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ 𝑁 ) ) ) |
| 71 |
69 26 70
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ 𝑁 ) ) |
| 72 |
68 71
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑃 ‘ 𝑀 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
| 73 |
72
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑘 ∈ ( 𝑃 ‘ 𝑀 ) ↔ 𝑘 ∈ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 74 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝐴 ⊆ ℕ0 ) |
| 75 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝐵 ⊆ ℕ0 ) |
| 76 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 77 |
74 75 3 76
|
smuval |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑘 ∈ ( 𝐴 smul 𝐵 ) ↔ 𝑘 ∈ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 78 |
73 77
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑘 ∈ ( 𝑃 ‘ 𝑀 ) ↔ 𝑘 ∈ ( 𝐴 smul 𝐵 ) ) ) |
| 79 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 80 |
79
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℤ ) |
| 81 |
80
|
peano2zd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℤ ) |
| 82 |
4
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 83 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
| 84 |
|
uztric |
⊢ ( ( ( 𝑘 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ∨ ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) ) |
| 85 |
81 83 84
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ∨ ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) ) |
| 86 |
24 78 85
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ∈ ( 𝑃 ‘ 𝑀 ) ↔ 𝑘 ∈ ( 𝐴 smul 𝐵 ) ) ) |
| 87 |
86
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 → ( 𝑘 ∈ ( 𝑃 ‘ 𝑀 ) ↔ 𝑘 ∈ ( 𝐴 smul 𝐵 ) ) ) ) |
| 88 |
12 16 87
|
pm5.21ndd |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝑃 ‘ 𝑀 ) ↔ 𝑘 ∈ ( 𝐴 smul 𝐵 ) ) ) |
| 89 |
88
|
eqrdv |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑀 ) = ( 𝐴 smul 𝐵 ) ) |