Metamath Proof Explorer


Theorem sn-el

Description: A version of el with an inner existential quantifier on x , which avoids ax-7 and ax-8 . (Contributed by SN, 18-Sep-2023)

Ref Expression
Assertion sn-el 𝑦𝑥 𝑥𝑦

Proof

Step Hyp Ref Expression
1 ax-pow 𝑦𝑥 ( ∀ 𝑤 ( 𝑤𝑥𝑤𝑧 ) → 𝑥𝑦 )
2 ax6ev 𝑥 𝑥 = 𝑧
3 ax9v1 ( 𝑥 = 𝑧 → ( 𝑤𝑥𝑤𝑧 ) )
4 3 alrimiv ( 𝑥 = 𝑧 → ∀ 𝑤 ( 𝑤𝑥𝑤𝑧 ) )
5 2 4 eximii 𝑥𝑤 ( 𝑤𝑥𝑤𝑧 )
6 exim ( ∀ 𝑥 ( ∀ 𝑤 ( 𝑤𝑥𝑤𝑧 ) → 𝑥𝑦 ) → ( ∃ 𝑥𝑤 ( 𝑤𝑥𝑤𝑧 ) → ∃ 𝑥 𝑥𝑦 ) )
7 5 6 mpi ( ∀ 𝑥 ( ∀ 𝑤 ( 𝑤𝑥𝑤𝑧 ) → 𝑥𝑦 ) → ∃ 𝑥 𝑥𝑦 )
8 1 7 eximii 𝑦𝑥 𝑥𝑦