Metamath Proof Explorer


Theorem sn-iotaex

Description: iotaex without ax-10 , ax-11 , ax-12 . (Contributed by SN, 6-Nov-2024)

Ref Expression
Assertion sn-iotaex ( ℩ 𝑥 𝜑 ) ∈ V

Proof

Step Hyp Ref Expression
1 sn-iotaval ( { 𝑥𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) = 𝑦 )
2 vex 𝑦 ∈ V
3 1 2 eqeltrdi ( { 𝑥𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) ∈ V )
4 3 exlimiv ( ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) ∈ V )
5 sn-iotanul ( ¬ ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) = ∅ )
6 0ex ∅ ∈ V
7 5 6 eqeltrdi ( ¬ ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) ∈ V )
8 4 7 pm2.61i ( ℩ 𝑥 𝜑 ) ∈ V