Metamath Proof Explorer


Theorem sn-iotassuni

Description: iotassuni without ax-10 , ax-11 , ax-12 . (Contributed by SN, 6-Nov-2024)

Ref Expression
Assertion sn-iotassuni ( ℩ 𝑥 𝜑 ) ⊆ { 𝑥𝜑 }

Proof

Step Hyp Ref Expression
1 sn-iotauni ( ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) = { 𝑥𝜑 } )
2 eqimss ( ( ℩ 𝑥 𝜑 ) = { 𝑥𝜑 } → ( ℩ 𝑥 𝜑 ) ⊆ { 𝑥𝜑 } )
3 1 2 syl ( ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) ⊆ { 𝑥𝜑 } )
4 sn-iotanul ( ¬ ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) = ∅ )
5 0ss ∅ ⊆ { 𝑥𝜑 }
6 4 5 eqsstrdi ( ¬ ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) ⊆ { 𝑥𝜑 } )
7 3 6 pm2.61i ( ℩ 𝑥 𝜑 ) ⊆ { 𝑥𝜑 }