Description: iotassuni without ax-10 , ax-11 , ax-12 . (Contributed by SN, 6-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | sn-iotassuni | ⊢ ( ℩ 𝑥 𝜑 ) ⊆ ∪ { 𝑥 ∣ 𝜑 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sn-iotauni | ⊢ ( ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) = ∪ { 𝑥 ∣ 𝜑 } ) | |
2 | eqimss | ⊢ ( ( ℩ 𝑥 𝜑 ) = ∪ { 𝑥 ∣ 𝜑 } → ( ℩ 𝑥 𝜑 ) ⊆ ∪ { 𝑥 ∣ 𝜑 } ) | |
3 | 1 2 | syl | ⊢ ( ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) ⊆ ∪ { 𝑥 ∣ 𝜑 } ) |
4 | sn-iotanul | ⊢ ( ¬ ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) = ∅ ) | |
5 | 0ss | ⊢ ∅ ⊆ ∪ { 𝑥 ∣ 𝜑 } | |
6 | 4 5 | eqsstrdi | ⊢ ( ¬ ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) ⊆ ∪ { 𝑥 ∣ 𝜑 } ) |
7 | 3 6 | pm2.61i | ⊢ ( ℩ 𝑥 𝜑 ) ⊆ ∪ { 𝑥 ∣ 𝜑 } |