Metamath Proof Explorer


Theorem sn-iotaval

Description: iotaval without ax-10 , ax-11 , ax-12 . (Contributed by SN, 23-Nov-2024)

Ref Expression
Assertion sn-iotaval ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ( ℩ 𝑥 𝜑 ) = 𝑦 )

Proof

Step Hyp Ref Expression
1 abbi1sn ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → { 𝑥𝜑 } = { 𝑦 } )
2 iotavallem ( { 𝑥𝜑 } = { 𝑦 } → ( ℩ 𝑥 𝜑 ) = 𝑦 )
3 1 2 syl ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ( ℩ 𝑥 𝜑 ) = 𝑦 )