Metamath Proof Explorer


Theorem sn0topon

Description: The singleton of the empty set is a topology on the empty set. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion sn0topon { ∅ } ∈ ( TopOn ‘ ∅ )

Proof

Step Hyp Ref Expression
1 pw0 𝒫 ∅ = { ∅ }
2 0ex ∅ ∈ V
3 distopon ( ∅ ∈ V → 𝒫 ∅ ∈ ( TopOn ‘ ∅ ) )
4 2 3 ax-mp 𝒫 ∅ ∈ ( TopOn ‘ ∅ )
5 1 4 eqeltrri { ∅ } ∈ ( TopOn ‘ ∅ )