Step |
Hyp |
Ref |
Expression |
1 |
|
snpsub.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
snpsub.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
3 |
|
snssi |
⊢ ( 𝑃 ∈ 𝐴 → { 𝑃 } ⊆ 𝐴 ) |
4 |
3
|
adantl |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → { 𝑃 } ⊆ 𝐴 ) |
5 |
|
atllat |
⊢ ( 𝐾 ∈ AtLat → 𝐾 ∈ Lat ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
7 |
6 1
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
8 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
9 |
6 8
|
latjidm |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) = 𝑃 ) |
10 |
5 7 9
|
syl2an |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) = 𝑃 ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑟 ∈ 𝐴 ) → ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) = 𝑃 ) |
12 |
11
|
breq2d |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑟 ∈ 𝐴 ) → ( 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ↔ 𝑟 ( le ‘ 𝐾 ) 𝑃 ) ) |
13 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
14 |
13 1
|
atcmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑟 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑟 ( le ‘ 𝐾 ) 𝑃 ↔ 𝑟 = 𝑃 ) ) |
15 |
14
|
3com23 |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) → ( 𝑟 ( le ‘ 𝐾 ) 𝑃 ↔ 𝑟 = 𝑃 ) ) |
16 |
15
|
3expa |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑟 ∈ 𝐴 ) → ( 𝑟 ( le ‘ 𝐾 ) 𝑃 ↔ 𝑟 = 𝑃 ) ) |
17 |
16
|
biimpd |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑟 ∈ 𝐴 ) → ( 𝑟 ( le ‘ 𝐾 ) 𝑃 → 𝑟 = 𝑃 ) ) |
18 |
12 17
|
sylbid |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑟 ∈ 𝐴 ) → ( 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) → 𝑟 = 𝑃 ) ) |
19 |
18
|
adantld |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑟 ∈ 𝐴 ) → ( ( ( 𝑝 = 𝑃 ∧ 𝑞 = 𝑃 ) ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ) → 𝑟 = 𝑃 ) ) |
20 |
|
velsn |
⊢ ( 𝑝 ∈ { 𝑃 } ↔ 𝑝 = 𝑃 ) |
21 |
|
velsn |
⊢ ( 𝑞 ∈ { 𝑃 } ↔ 𝑞 = 𝑃 ) |
22 |
20 21
|
anbi12i |
⊢ ( ( 𝑝 ∈ { 𝑃 } ∧ 𝑞 ∈ { 𝑃 } ) ↔ ( 𝑝 = 𝑃 ∧ 𝑞 = 𝑃 ) ) |
23 |
22
|
anbi1i |
⊢ ( ( ( 𝑝 ∈ { 𝑃 } ∧ 𝑞 ∈ { 𝑃 } ) ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ↔ ( ( 𝑝 = 𝑃 ∧ 𝑞 = 𝑃 ) ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ) |
24 |
|
oveq12 |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑞 = 𝑃 ) → ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) = ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ) |
25 |
24
|
breq2d |
⊢ ( ( 𝑝 = 𝑃 ∧ 𝑞 = 𝑃 ) → ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ↔ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ) ) |
26 |
25
|
pm5.32i |
⊢ ( ( ( 𝑝 = 𝑃 ∧ 𝑞 = 𝑃 ) ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ↔ ( ( 𝑝 = 𝑃 ∧ 𝑞 = 𝑃 ) ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ) ) |
27 |
23 26
|
bitri |
⊢ ( ( ( 𝑝 ∈ { 𝑃 } ∧ 𝑞 ∈ { 𝑃 } ) ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ↔ ( ( 𝑝 = 𝑃 ∧ 𝑞 = 𝑃 ) ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ( join ‘ 𝐾 ) 𝑃 ) ) ) |
28 |
|
velsn |
⊢ ( 𝑟 ∈ { 𝑃 } ↔ 𝑟 = 𝑃 ) |
29 |
19 27 28
|
3imtr4g |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑟 ∈ 𝐴 ) → ( ( ( 𝑝 ∈ { 𝑃 } ∧ 𝑞 ∈ { 𝑃 } ) ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) → 𝑟 ∈ { 𝑃 } ) ) |
30 |
29
|
exp4b |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → ( 𝑟 ∈ 𝐴 → ( ( 𝑝 ∈ { 𝑃 } ∧ 𝑞 ∈ { 𝑃 } ) → ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ { 𝑃 } ) ) ) ) |
31 |
30
|
com23 |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑝 ∈ { 𝑃 } ∧ 𝑞 ∈ { 𝑃 } ) → ( 𝑟 ∈ 𝐴 → ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ { 𝑃 } ) ) ) ) |
32 |
31
|
ralrimdv |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑝 ∈ { 𝑃 } ∧ 𝑞 ∈ { 𝑃 } ) → ∀ 𝑟 ∈ 𝐴 ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ { 𝑃 } ) ) ) |
33 |
32
|
ralrimivv |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → ∀ 𝑝 ∈ { 𝑃 } ∀ 𝑞 ∈ { 𝑃 } ∀ 𝑟 ∈ 𝐴 ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ { 𝑃 } ) ) |
34 |
4 33
|
jca |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → ( { 𝑃 } ⊆ 𝐴 ∧ ∀ 𝑝 ∈ { 𝑃 } ∀ 𝑞 ∈ { 𝑃 } ∀ 𝑟 ∈ 𝐴 ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ { 𝑃 } ) ) ) |
35 |
34
|
ex |
⊢ ( 𝐾 ∈ AtLat → ( 𝑃 ∈ 𝐴 → ( { 𝑃 } ⊆ 𝐴 ∧ ∀ 𝑝 ∈ { 𝑃 } ∀ 𝑞 ∈ { 𝑃 } ∀ 𝑟 ∈ 𝐴 ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ { 𝑃 } ) ) ) ) |
36 |
13 8 1 2
|
ispsubsp |
⊢ ( 𝐾 ∈ AtLat → ( { 𝑃 } ∈ 𝑆 ↔ ( { 𝑃 } ⊆ 𝐴 ∧ ∀ 𝑝 ∈ { 𝑃 } ∀ 𝑞 ∈ { 𝑃 } ∀ 𝑟 ∈ 𝐴 ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ { 𝑃 } ) ) ) ) |
37 |
35 36
|
sylibrd |
⊢ ( 𝐾 ∈ AtLat → ( 𝑃 ∈ 𝐴 → { 𝑃 } ∈ 𝑆 ) ) |
38 |
37
|
imp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → { 𝑃 } ∈ 𝑆 ) |