Step |
Hyp |
Ref |
Expression |
1 |
|
snclseqg.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
snclseqg.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
3 |
|
snclseqg.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
|
snclseqg.r |
⊢ ∼ = ( 𝐺 ~QG 𝑆 ) |
5 |
|
snclseqg.s |
⊢ 𝑆 = ( ( cls ‘ 𝐽 ) ‘ { 0 } ) |
6 |
5
|
imaeq2i |
⊢ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑆 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ ( ( cls ‘ 𝐽 ) ‘ { 0 } ) ) |
7 |
|
tgpgrp |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) |
8 |
7
|
adantr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
9 |
2 1
|
tgptopon |
⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
11 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ Top ) |
13 |
1 3
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝑋 ) |
14 |
8 13
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 0 ∈ 𝑋 ) |
15 |
14
|
snssd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → { 0 } ⊆ 𝑋 ) |
16 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
17 |
10 16
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
18 |
15 17
|
sseqtrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → { 0 } ⊆ ∪ 𝐽 ) |
19 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
20 |
19
|
clsss3 |
⊢ ( ( 𝐽 ∈ Top ∧ { 0 } ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ { 0 } ) ⊆ ∪ 𝐽 ) |
21 |
12 18 20
|
syl2anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ { 0 } ) ⊆ ∪ 𝐽 ) |
22 |
21 17
|
sseqtrrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ { 0 } ) ⊆ 𝑋 ) |
23 |
5 22
|
eqsstrid |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝑆 ⊆ 𝑋 ) |
24 |
|
simpr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
25 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
26 |
1 4 25
|
eqglact |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑆 ) ) |
27 |
8 23 24 26
|
syl3anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑆 ) ) |
28 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) |
29 |
28 1 25 2
|
tgplacthmeo |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
30 |
19
|
hmeocls |
⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ∧ { 0 } ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ { 0 } ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ ( ( cls ‘ 𝐽 ) ‘ { 0 } ) ) ) |
31 |
29 18 30
|
syl2anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ { 0 } ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ ( ( cls ‘ 𝐽 ) ‘ { 0 } ) ) ) |
32 |
6 27 31
|
3eqtr4a |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ { 0 } ) ) ) |
33 |
|
df-ima |
⊢ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ { 0 } ) = ran ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) ↾ { 0 } ) |
34 |
15
|
resmptd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) ↾ { 0 } ) = ( 𝑥 ∈ { 0 } ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
35 |
34
|
rneqd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ran ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) ↾ { 0 } ) = ran ( 𝑥 ∈ { 0 } ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
36 |
33 35
|
syl5eq |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ { 0 } ) = ran ( 𝑥 ∈ { 0 } ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
37 |
3
|
fvexi |
⊢ 0 ∈ V |
38 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝐴 ( +g ‘ 𝐺 ) 0 ) ) |
39 |
38
|
eqeq2d |
⊢ ( 𝑥 = 0 → ( 𝑦 = ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ↔ 𝑦 = ( 𝐴 ( +g ‘ 𝐺 ) 0 ) ) ) |
40 |
37 39
|
rexsn |
⊢ ( ∃ 𝑥 ∈ { 0 } 𝑦 = ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ↔ 𝑦 = ( 𝐴 ( +g ‘ 𝐺 ) 0 ) ) |
41 |
1 25 3
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( +g ‘ 𝐺 ) 0 ) = 𝐴 ) |
42 |
7 41
|
sylan |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( +g ‘ 𝐺 ) 0 ) = 𝐴 ) |
43 |
42
|
eqeq2d |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑦 = ( 𝐴 ( +g ‘ 𝐺 ) 0 ) ↔ 𝑦 = 𝐴 ) ) |
44 |
40 43
|
syl5bb |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ∃ 𝑥 ∈ { 0 } 𝑦 = ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ↔ 𝑦 = 𝐴 ) ) |
45 |
44
|
abbidv |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → { 𝑦 ∣ ∃ 𝑥 ∈ { 0 } 𝑦 = ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) } = { 𝑦 ∣ 𝑦 = 𝐴 } ) |
46 |
|
eqid |
⊢ ( 𝑥 ∈ { 0 } ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑥 ∈ { 0 } ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) |
47 |
46
|
rnmpt |
⊢ ran ( 𝑥 ∈ { 0 } ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) = { 𝑦 ∣ ∃ 𝑥 ∈ { 0 } 𝑦 = ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) } |
48 |
|
df-sn |
⊢ { 𝐴 } = { 𝑦 ∣ 𝑦 = 𝐴 } |
49 |
45 47 48
|
3eqtr4g |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ran ( 𝑥 ∈ { 0 } ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) = { 𝐴 } ) |
50 |
36 49
|
eqtrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ { 0 } ) = { 𝐴 } ) |
51 |
50
|
fveq2d |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) “ { 0 } ) ) = ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
52 |
32 51
|
eqtrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) ) |