| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							snelmap.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑉 )  | 
						
						
							| 2 | 
							
								
							 | 
							snelmap.b | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑊 )  | 
						
						
							| 3 | 
							
								
							 | 
							snelmap.n | 
							⊢ ( 𝜑  →  𝐴  ≠  ∅ )  | 
						
						
							| 4 | 
							
								
							 | 
							snelmap.e | 
							⊢ ( 𝜑  →  ( 𝐴  ×  { 𝑥 } )  ∈  ( 𝐵  ↑m  𝐴 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							n0 | 
							⊢ ( 𝐴  ≠  ∅  ↔  ∃ 𝑦 𝑦  ∈  𝐴 )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							sylib | 
							⊢ ( 𝜑  →  ∃ 𝑦 𝑦  ∈  𝐴 )  | 
						
						
							| 7 | 
							
								
							 | 
							vex | 
							⊢ 𝑥  ∈  V  | 
						
						
							| 8 | 
							
								7
							 | 
							fvconst2 | 
							⊢ ( 𝑦  ∈  𝐴  →  ( ( 𝐴  ×  { 𝑥 } ) ‘ 𝑦 )  =  𝑥 )  | 
						
						
							| 9 | 
							
								8
							 | 
							eqcomd | 
							⊢ ( 𝑦  ∈  𝐴  →  𝑥  =  ( ( 𝐴  ×  { 𝑥 } ) ‘ 𝑦 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  𝑥  =  ( ( 𝐴  ×  { 𝑥 } ) ‘ 𝑦 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							elmapg | 
							⊢ ( ( 𝐵  ∈  𝑊  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝐴  ×  { 𝑥 } )  ∈  ( 𝐵  ↑m  𝐴 )  ↔  ( 𝐴  ×  { 𝑥 } ) : 𝐴 ⟶ 𝐵 ) )  | 
						
						
							| 12 | 
							
								2 1 11
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( 𝐴  ×  { 𝑥 } )  ∈  ( 𝐵  ↑m  𝐴 )  ↔  ( 𝐴  ×  { 𝑥 } ) : 𝐴 ⟶ 𝐵 ) )  | 
						
						
							| 13 | 
							
								4 12
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 𝐴  ×  { 𝑥 } ) : 𝐴 ⟶ 𝐵 )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ( 𝐴  ×  { 𝑥 } ) : 𝐴 ⟶ 𝐵 )  | 
						
						
							| 15 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  𝐴 )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝐴  ×  { 𝑥 } ) ‘ 𝑦 )  ∈  𝐵 )  | 
						
						
							| 17 | 
							
								10 16
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  𝑥  ∈  𝐵 )  | 
						
						
							| 18 | 
							
								17
							 | 
							ex | 
							⊢ ( 𝜑  →  ( 𝑦  ∈  𝐴  →  𝑥  ∈  𝐵 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							exlimdv | 
							⊢ ( 𝜑  →  ( ∃ 𝑦 𝑦  ∈  𝐴  →  𝑥  ∈  𝐵 ) )  | 
						
						
							| 20 | 
							
								6 19
							 | 
							mpd | 
							⊢ ( 𝜑  →  𝑥  ∈  𝐵 )  |