Step |
Hyp |
Ref |
Expression |
1 |
|
snelmap.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
snelmap.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
3 |
|
snelmap.n |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
4 |
|
snelmap.e |
⊢ ( 𝜑 → ( 𝐴 × { 𝑥 } ) ∈ ( 𝐵 ↑m 𝐴 ) ) |
5 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐴 ) |
6 |
3 5
|
sylib |
⊢ ( 𝜑 → ∃ 𝑦 𝑦 ∈ 𝐴 ) |
7 |
|
vex |
⊢ 𝑥 ∈ V |
8 |
7
|
fvconst2 |
⊢ ( 𝑦 ∈ 𝐴 → ( ( 𝐴 × { 𝑥 } ) ‘ 𝑦 ) = 𝑥 ) |
9 |
8
|
eqcomd |
⊢ ( 𝑦 ∈ 𝐴 → 𝑥 = ( ( 𝐴 × { 𝑥 } ) ‘ 𝑦 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = ( ( 𝐴 × { 𝑥 } ) ‘ 𝑦 ) ) |
11 |
|
elmapg |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 × { 𝑥 } ) ∈ ( 𝐵 ↑m 𝐴 ) ↔ ( 𝐴 × { 𝑥 } ) : 𝐴 ⟶ 𝐵 ) ) |
12 |
2 1 11
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 × { 𝑥 } ) ∈ ( 𝐵 ↑m 𝐴 ) ↔ ( 𝐴 × { 𝑥 } ) : 𝐴 ⟶ 𝐵 ) ) |
13 |
4 12
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 × { 𝑥 } ) : 𝐴 ⟶ 𝐵 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐴 × { 𝑥 } ) : 𝐴 ⟶ 𝐵 ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
16 |
14 15
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐴 × { 𝑥 } ) ‘ 𝑦 ) ∈ 𝐵 ) |
17 |
10 16
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
18 |
17
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
19 |
18
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑦 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
20 |
6 19
|
mpd |
⊢ ( 𝜑 → 𝑥 ∈ 𝐵 ) |