Metamath Proof Explorer


Theorem snelpw

Description: A singleton of a set belongs to the power class of a class containing the set. (Contributed by NM, 1-Apr-1998)

Ref Expression
Hypothesis snelpw.1 𝐴 ∈ V
Assertion snelpw ( 𝐴𝐵 ↔ { 𝐴 } ∈ 𝒫 𝐵 )

Proof

Step Hyp Ref Expression
1 snelpw.1 𝐴 ∈ V
2 1 snss ( 𝐴𝐵 ↔ { 𝐴 } ⊆ 𝐵 )
3 snex { 𝐴 } ∈ V
4 3 elpw ( { 𝐴 } ∈ 𝒫 𝐵 ↔ { 𝐴 } ⊆ 𝐵 )
5 2 4 bitr4i ( 𝐴𝐵 ↔ { 𝐴 } ∈ 𝒫 𝐵 )