Metamath Proof Explorer
Description: A singleton of a set belongs to the power class of a class containing
the set. (Contributed by NM, 1-Apr-1998)
|
|
Ref |
Expression |
|
Hypothesis |
snelpw.1 |
⊢ 𝐴 ∈ V |
|
Assertion |
snelpw |
⊢ ( 𝐴 ∈ 𝐵 ↔ { 𝐴 } ∈ 𝒫 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
snelpw.1 |
⊢ 𝐴 ∈ V |
2 |
1
|
snss |
⊢ ( 𝐴 ∈ 𝐵 ↔ { 𝐴 } ⊆ 𝐵 ) |
3 |
|
snex |
⊢ { 𝐴 } ∈ V |
4 |
3
|
elpw |
⊢ ( { 𝐴 } ∈ 𝒫 𝐵 ↔ { 𝐴 } ⊆ 𝐵 ) |
5 |
2 4
|
bitr4i |
⊢ ( 𝐴 ∈ 𝐵 ↔ { 𝐴 } ∈ 𝒫 𝐵 ) |