Metamath Proof Explorer


Theorem snelpwiOLD

Description: Obsolete version of snelpwi as of 17-Jan-2025. (Contributed by NM, 28-May-1995) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion snelpwiOLD ( 𝐴𝐵 → { 𝐴 } ∈ 𝒫 𝐵 )

Proof

Step Hyp Ref Expression
1 snssi ( 𝐴𝐵 → { 𝐴 } ⊆ 𝐵 )
2 snex { 𝐴 } ∈ V
3 2 elpw ( { 𝐴 } ∈ 𝒫 𝐵 ↔ { 𝐴 } ⊆ 𝐵 )
4 1 3 sylibr ( 𝐴𝐵 → { 𝐴 } ∈ 𝒫 𝐵 )