Description: Equality theorem for singletons. Part of Exercise 4 of TakeutiZaring p. 15. (Contributed by NM, 21-Jun-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sneq | ⊢ ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑥 = 𝐴 ↔ 𝑥 = 𝐵 ) ) | |
| 2 | 1 | abbidv | ⊢ ( 𝐴 = 𝐵 → { 𝑥 ∣ 𝑥 = 𝐴 } = { 𝑥 ∣ 𝑥 = 𝐵 } ) |
| 3 | df-sn | ⊢ { 𝐴 } = { 𝑥 ∣ 𝑥 = 𝐴 } | |
| 4 | df-sn | ⊢ { 𝐵 } = { 𝑥 ∣ 𝑥 = 𝐵 } | |
| 5 | 2 3 4 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐵 } ) |