Description: Two singletons of sets are equal iff their elements are equal. (Contributed by Scott Fenton, 16-Apr-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | sneqbg | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } = { 𝐵 } ↔ 𝐴 = 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqrg | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } = { 𝐵 } → 𝐴 = 𝐵 ) ) | |
2 | sneq | ⊢ ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐵 } ) | |
3 | 1 2 | impbid1 | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } = { 𝐵 } ↔ 𝐴 = 𝐵 ) ) |