Metamath Proof Explorer


Theorem sneqbg

Description: Two singletons of sets are equal iff their elements are equal. (Contributed by Scott Fenton, 16-Apr-2012)

Ref Expression
Assertion sneqbg ( 𝐴𝑉 → ( { 𝐴 } = { 𝐵 } ↔ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 sneqrg ( 𝐴𝑉 → ( { 𝐴 } = { 𝐵 } → 𝐴 = 𝐵 ) )
2 sneq ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐵 } )
3 1 2 impbid1 ( 𝐴𝑉 → ( { 𝐴 } = { 𝐵 } ↔ 𝐴 = 𝐵 ) )