Metamath Proof Explorer


Theorem snex

Description: A singleton is a set. Theorem 7.12 of Quine p. 51, proved using Extensionality, Separation, Null Set, and Pairing. See also snexALT . (Contributed by NM, 7-Aug-1994) (Revised by Mario Carneiro, 19-May-2013)

Ref Expression
Assertion snex { 𝐴 } ∈ V

Proof

Step Hyp Ref Expression
1 snexg ( 𝐴 ∈ V → { 𝐴 } ∈ V )
2 snprc ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ )
3 2 biimpi ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ )
4 0ex ∅ ∈ V
5 3 4 eqeltrdi ( ¬ 𝐴 ∈ V → { 𝐴 } ∈ V )
6 1 5 pm2.61i { 𝐴 } ∈ V