Description: Alternate proof of snex using Power Set ( ax-pow ) instead of Pairing ( ax-pr ). Unlike in the proof of zfpair , Replacement ( ax-rep ) is not needed. (Contributed by NM, 7-Aug-1994) (Proof shortened by Andrew Salmon, 25-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | snexALT | ⊢ { 𝐴 } ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsspw | ⊢ { 𝐴 } ⊆ 𝒫 𝐴 | |
2 | ssexg | ⊢ ( ( { 𝐴 } ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V ) → { 𝐴 } ∈ V ) | |
3 | 1 2 | mpan | ⊢ ( 𝒫 𝐴 ∈ V → { 𝐴 } ∈ V ) |
4 | pwexg | ⊢ ( 𝐴 ∈ V → 𝒫 𝐴 ∈ V ) | |
5 | 4 | con3i | ⊢ ( ¬ 𝒫 𝐴 ∈ V → ¬ 𝐴 ∈ V ) |
6 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
7 | 6 | biimpi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) |
8 | 0ex | ⊢ ∅ ∈ V | |
9 | 7 8 | eqeltrdi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } ∈ V ) |
10 | 5 9 | syl | ⊢ ( ¬ 𝒫 𝐴 ∈ V → { 𝐴 } ∈ V ) |
11 | 3 10 | pm2.61i | ⊢ { 𝐴 } ∈ V |