Metamath Proof Explorer


Theorem snexALT

Description: Alternate proof of snex using Power Set ( ax-pow ) instead of Pairing ( ax-pr ). Unlike in the proof of zfpair , Replacement ( ax-rep ) is not needed. (Contributed by NM, 7-Aug-1994) (Proof shortened by Andrew Salmon, 25-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion snexALT { 𝐴 } ∈ V

Proof

Step Hyp Ref Expression
1 snsspw { 𝐴 } ⊆ 𝒫 𝐴
2 ssexg ( ( { 𝐴 } ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V ) → { 𝐴 } ∈ V )
3 1 2 mpan ( 𝒫 𝐴 ∈ V → { 𝐴 } ∈ V )
4 pwexg ( 𝐴 ∈ V → 𝒫 𝐴 ∈ V )
5 4 con3i ( ¬ 𝒫 𝐴 ∈ V → ¬ 𝐴 ∈ V )
6 snprc ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ )
7 6 biimpi ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ )
8 0ex ∅ ∈ V
9 7 8 eqeltrdi ( ¬ 𝐴 ∈ V → { 𝐴 } ∈ V )
10 5 9 syl ( ¬ 𝒫 𝐴 ∈ V → { 𝐴 } ∈ V )
11 3 10 pm2.61i { 𝐴 } ∈ V