Step |
Hyp |
Ref |
Expression |
1 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ V ) |
2 |
1
|
3adant2 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ V ) |
3 |
|
simp2 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ≠ ∅ ) |
4 |
|
snfil |
⊢ ( ( 𝐴 ∈ V ∧ 𝐴 ≠ ∅ ) → { 𝐴 } ∈ ( Fil ‘ 𝐴 ) ) |
5 |
2 3 4
|
syl2anc |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉 ) → { 𝐴 } ∈ ( Fil ‘ 𝐴 ) ) |
6 |
|
filfbas |
⊢ ( { 𝐴 } ∈ ( Fil ‘ 𝐴 ) → { 𝐴 } ∈ ( fBas ‘ 𝐴 ) ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉 ) → { 𝐴 } ∈ ( fBas ‘ 𝐴 ) ) |
8 |
|
simp1 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ⊆ 𝐵 ) |
9 |
|
elpw2g |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |
10 |
9
|
3ad2ant3 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |
11 |
8 10
|
mpbird |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ 𝒫 𝐵 ) |
12 |
11
|
snssd |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉 ) → { 𝐴 } ⊆ 𝒫 𝐵 ) |
13 |
|
simp3 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) |
14 |
|
fbasweak |
⊢ ( ( { 𝐴 } ∈ ( fBas ‘ 𝐴 ) ∧ { 𝐴 } ⊆ 𝒫 𝐵 ∧ 𝐵 ∈ 𝑉 ) → { 𝐴 } ∈ ( fBas ‘ 𝐵 ) ) |
15 |
7 12 13 14
|
syl3anc |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉 ) → { 𝐴 } ∈ ( fBas ‘ 𝐵 ) ) |