| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ssexg | 
							⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ∈  𝑉 )  →  𝐴  ∈  V )  | 
						
						
							| 2 | 
							
								1
							 | 
							3adant2 | 
							⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐴  ≠  ∅  ∧  𝐵  ∈  𝑉 )  →  𝐴  ∈  V )  | 
						
						
							| 3 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐴  ≠  ∅  ∧  𝐵  ∈  𝑉 )  →  𝐴  ≠  ∅ )  | 
						
						
							| 4 | 
							
								
							 | 
							snfil | 
							⊢ ( ( 𝐴  ∈  V  ∧  𝐴  ≠  ∅ )  →  { 𝐴 }  ∈  ( Fil ‘ 𝐴 ) )  | 
						
						
							| 5 | 
							
								2 3 4
							 | 
							syl2anc | 
							⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐴  ≠  ∅  ∧  𝐵  ∈  𝑉 )  →  { 𝐴 }  ∈  ( Fil ‘ 𝐴 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							filfbas | 
							⊢ ( { 𝐴 }  ∈  ( Fil ‘ 𝐴 )  →  { 𝐴 }  ∈  ( fBas ‘ 𝐴 ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐴  ≠  ∅  ∧  𝐵  ∈  𝑉 )  →  { 𝐴 }  ∈  ( fBas ‘ 𝐴 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐴  ≠  ∅  ∧  𝐵  ∈  𝑉 )  →  𝐴  ⊆  𝐵 )  | 
						
						
							| 9 | 
							
								
							 | 
							elpw2g | 
							⊢ ( 𝐵  ∈  𝑉  →  ( 𝐴  ∈  𝒫  𝐵  ↔  𝐴  ⊆  𝐵 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐴  ≠  ∅  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴  ∈  𝒫  𝐵  ↔  𝐴  ⊆  𝐵 ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							mpbird | 
							⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐴  ≠  ∅  ∧  𝐵  ∈  𝑉 )  →  𝐴  ∈  𝒫  𝐵 )  | 
						
						
							| 12 | 
							
								11
							 | 
							snssd | 
							⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐴  ≠  ∅  ∧  𝐵  ∈  𝑉 )  →  { 𝐴 }  ⊆  𝒫  𝐵 )  | 
						
						
							| 13 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐴  ≠  ∅  ∧  𝐵  ∈  𝑉 )  →  𝐵  ∈  𝑉 )  | 
						
						
							| 14 | 
							
								
							 | 
							fbasweak | 
							⊢ ( ( { 𝐴 }  ∈  ( fBas ‘ 𝐴 )  ∧  { 𝐴 }  ⊆  𝒫  𝐵  ∧  𝐵  ∈  𝑉 )  →  { 𝐴 }  ∈  ( fBas ‘ 𝐵 ) )  | 
						
						
							| 15 | 
							
								7 12 13 14
							 | 
							syl3anc | 
							⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐴  ≠  ∅  ∧  𝐵  ∈  𝑉 )  →  { 𝐴 }  ∈  ( fBas ‘ 𝐵 ) )  |