Step |
Hyp |
Ref |
Expression |
1 |
|
1onn |
⊢ 1o ∈ ω |
2 |
|
ensn1g |
⊢ ( 𝐴 ∈ V → { 𝐴 } ≈ 1o ) |
3 |
|
breq2 |
⊢ ( 𝑥 = 1o → ( { 𝐴 } ≈ 𝑥 ↔ { 𝐴 } ≈ 1o ) ) |
4 |
3
|
rspcev |
⊢ ( ( 1o ∈ ω ∧ { 𝐴 } ≈ 1o ) → ∃ 𝑥 ∈ ω { 𝐴 } ≈ 𝑥 ) |
5 |
1 2 4
|
sylancr |
⊢ ( 𝐴 ∈ V → ∃ 𝑥 ∈ ω { 𝐴 } ≈ 𝑥 ) |
6 |
|
isfi |
⊢ ( { 𝐴 } ∈ Fin ↔ ∃ 𝑥 ∈ ω { 𝐴 } ≈ 𝑥 ) |
7 |
5 6
|
sylibr |
⊢ ( 𝐴 ∈ V → { 𝐴 } ∈ Fin ) |
8 |
|
snprc |
⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) |
9 |
|
0fi |
⊢ ∅ ∈ Fin |
10 |
|
eleq1 |
⊢ ( { 𝐴 } = ∅ → ( { 𝐴 } ∈ Fin ↔ ∅ ∈ Fin ) ) |
11 |
9 10
|
mpbiri |
⊢ ( { 𝐴 } = ∅ → { 𝐴 } ∈ Fin ) |
12 |
8 11
|
sylbi |
⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } ∈ Fin ) |
13 |
7 12
|
pm2.61i |
⊢ { 𝐴 } ∈ Fin |