| Step | Hyp | Ref | Expression | 
						
							| 1 |  | velsn | ⊢ ( 𝑥  ∈  { 𝐴 }  ↔  𝑥  =  𝐴 ) | 
						
							| 2 |  | eqimss | ⊢ ( 𝑥  =  𝐴  →  𝑥  ⊆  𝐴 ) | 
						
							| 3 | 2 | pm4.71ri | ⊢ ( 𝑥  =  𝐴  ↔  ( 𝑥  ⊆  𝐴  ∧  𝑥  =  𝐴 ) ) | 
						
							| 4 | 1 3 | bitri | ⊢ ( 𝑥  ∈  { 𝐴 }  ↔  ( 𝑥  ⊆  𝐴  ∧  𝑥  =  𝐴 ) ) | 
						
							| 5 | 4 | a1i | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐴  ≠  ∅ )  →  ( 𝑥  ∈  { 𝐴 }  ↔  ( 𝑥  ⊆  𝐴  ∧  𝑥  =  𝐴 ) ) ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐴  ≠  ∅ )  →  𝐴  ∈  𝐵 ) | 
						
							| 7 |  | eqid | ⊢ 𝐴  =  𝐴 | 
						
							| 8 |  | eqsbc1 | ⊢ ( 𝐴  ∈  𝐵  →  ( [ 𝐴  /  𝑥 ] 𝑥  =  𝐴  ↔  𝐴  =  𝐴 ) ) | 
						
							| 9 | 7 8 | mpbiri | ⊢ ( 𝐴  ∈  𝐵  →  [ 𝐴  /  𝑥 ] 𝑥  =  𝐴 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐴  ≠  ∅ )  →  [ 𝐴  /  𝑥 ] 𝑥  =  𝐴 ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐴  ≠  ∅ )  →  𝐴  ≠  ∅ ) | 
						
							| 12 | 11 | necomd | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐴  ≠  ∅ )  →  ∅  ≠  𝐴 ) | 
						
							| 13 | 12 | neneqd | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐴  ≠  ∅ )  →  ¬  ∅  =  𝐴 ) | 
						
							| 14 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 15 |  | eqsbc1 | ⊢ ( ∅  ∈  V  →  ( [ ∅  /  𝑥 ] 𝑥  =  𝐴  ↔  ∅  =  𝐴 ) ) | 
						
							| 16 | 14 15 | ax-mp | ⊢ ( [ ∅  /  𝑥 ] 𝑥  =  𝐴  ↔  ∅  =  𝐴 ) | 
						
							| 17 | 13 16 | sylnibr | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐴  ≠  ∅ )  →  ¬  [ ∅  /  𝑥 ] 𝑥  =  𝐴 ) | 
						
							| 18 |  | sseq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ⊆  𝑦  ↔  𝐴  ⊆  𝑦 ) ) | 
						
							| 19 | 18 | anbi2d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑦  ⊆  𝐴  ∧  𝑥  ⊆  𝑦 )  ↔  ( 𝑦  ⊆  𝐴  ∧  𝐴  ⊆  𝑦 ) ) ) | 
						
							| 20 |  | eqss | ⊢ ( 𝑦  =  𝐴  ↔  ( 𝑦  ⊆  𝐴  ∧  𝐴  ⊆  𝑦 ) ) | 
						
							| 21 | 20 | biimpri | ⊢ ( ( 𝑦  ⊆  𝐴  ∧  𝐴  ⊆  𝑦 )  →  𝑦  =  𝐴 ) | 
						
							| 22 | 19 21 | biimtrdi | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑦  ⊆  𝐴  ∧  𝑥  ⊆  𝑦 )  →  𝑦  =  𝐴 ) ) | 
						
							| 23 | 22 | com12 | ⊢ ( ( 𝑦  ⊆  𝐴  ∧  𝑥  ⊆  𝑦 )  →  ( 𝑥  =  𝐴  →  𝑦  =  𝐴 ) ) | 
						
							| 24 | 23 | 3adant1 | ⊢ ( ( ( 𝐴  ∈  𝐵  ∧  𝐴  ≠  ∅ )  ∧  𝑦  ⊆  𝐴  ∧  𝑥  ⊆  𝑦 )  →  ( 𝑥  =  𝐴  →  𝑦  =  𝐴 ) ) | 
						
							| 25 |  | sbcid | ⊢ ( [ 𝑥  /  𝑥 ] 𝑥  =  𝐴  ↔  𝑥  =  𝐴 ) | 
						
							| 26 |  | eqsbc1 | ⊢ ( 𝑦  ∈  V  →  ( [ 𝑦  /  𝑥 ] 𝑥  =  𝐴  ↔  𝑦  =  𝐴 ) ) | 
						
							| 27 | 26 | elv | ⊢ ( [ 𝑦  /  𝑥 ] 𝑥  =  𝐴  ↔  𝑦  =  𝐴 ) | 
						
							| 28 | 24 25 27 | 3imtr4g | ⊢ ( ( ( 𝐴  ∈  𝐵  ∧  𝐴  ≠  ∅ )  ∧  𝑦  ⊆  𝐴  ∧  𝑥  ⊆  𝑦 )  →  ( [ 𝑥  /  𝑥 ] 𝑥  =  𝐴  →  [ 𝑦  /  𝑥 ] 𝑥  =  𝐴 ) ) | 
						
							| 29 |  | ineq12 | ⊢ ( ( 𝑦  =  𝐴  ∧  𝑥  =  𝐴 )  →  ( 𝑦  ∩  𝑥 )  =  ( 𝐴  ∩  𝐴 ) ) | 
						
							| 30 |  | inidm | ⊢ ( 𝐴  ∩  𝐴 )  =  𝐴 | 
						
							| 31 | 29 30 | eqtrdi | ⊢ ( ( 𝑦  =  𝐴  ∧  𝑥  =  𝐴 )  →  ( 𝑦  ∩  𝑥 )  =  𝐴 ) | 
						
							| 32 | 27 25 31 | syl2anb | ⊢ ( ( [ 𝑦  /  𝑥 ] 𝑥  =  𝐴  ∧  [ 𝑥  /  𝑥 ] 𝑥  =  𝐴 )  →  ( 𝑦  ∩  𝑥 )  =  𝐴 ) | 
						
							| 33 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 34 | 33 | inex1 | ⊢ ( 𝑦  ∩  𝑥 )  ∈  V | 
						
							| 35 |  | eqsbc1 | ⊢ ( ( 𝑦  ∩  𝑥 )  ∈  V  →  ( [ ( 𝑦  ∩  𝑥 )  /  𝑥 ] 𝑥  =  𝐴  ↔  ( 𝑦  ∩  𝑥 )  =  𝐴 ) ) | 
						
							| 36 | 34 35 | ax-mp | ⊢ ( [ ( 𝑦  ∩  𝑥 )  /  𝑥 ] 𝑥  =  𝐴  ↔  ( 𝑦  ∩  𝑥 )  =  𝐴 ) | 
						
							| 37 | 32 36 | sylibr | ⊢ ( ( [ 𝑦  /  𝑥 ] 𝑥  =  𝐴  ∧  [ 𝑥  /  𝑥 ] 𝑥  =  𝐴 )  →  [ ( 𝑦  ∩  𝑥 )  /  𝑥 ] 𝑥  =  𝐴 ) | 
						
							| 38 | 37 | a1i | ⊢ ( ( ( 𝐴  ∈  𝐵  ∧  𝐴  ≠  ∅ )  ∧  𝑦  ⊆  𝐴  ∧  𝑥  ⊆  𝐴 )  →  ( ( [ 𝑦  /  𝑥 ] 𝑥  =  𝐴  ∧  [ 𝑥  /  𝑥 ] 𝑥  =  𝐴 )  →  [ ( 𝑦  ∩  𝑥 )  /  𝑥 ] 𝑥  =  𝐴 ) ) | 
						
							| 39 | 5 6 10 17 28 38 | isfild | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐴  ≠  ∅ )  →  { 𝐴 }  ∈  ( Fil ‘ 𝐴 ) ) |