Description: A class is a set iff it is a member of its singleton. (Contributed by NM, 5-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | snidb | ⊢ ( 𝐴 ∈ V ↔ 𝐴 ∈ { 𝐴 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ { 𝐴 } ) | |
2 | elex | ⊢ ( 𝐴 ∈ { 𝐴 } → 𝐴 ∈ V ) | |
3 | 1 2 | impbii | ⊢ ( 𝐴 ∈ V ↔ 𝐴 ∈ { 𝐴 } ) |