Description: A class is a set iff it is a member of its singleton. (Contributed by NM, 5-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snidb | ⊢ ( 𝐴 ∈ V ↔ 𝐴 ∈ { 𝐴 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ { 𝐴 } ) | |
| 2 | elex | ⊢ ( 𝐴 ∈ { 𝐴 } → 𝐴 ∈ V ) | |
| 3 | 1 2 | impbii | ⊢ ( 𝐴 ∈ V ↔ 𝐴 ∈ { 𝐴 } ) |