Metamath Proof Explorer


Theorem sniota

Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Assertion sniota ( ∃! 𝑥 𝜑 → { 𝑥𝜑 } = { ( ℩ 𝑥 𝜑 ) } )

Proof

Step Hyp Ref Expression
1 nfeu1 𝑥 ∃! 𝑥 𝜑
2 nfab1 𝑥 { 𝑥𝜑 }
3 nfiota1 𝑥 ( ℩ 𝑥 𝜑 )
4 3 nfsn 𝑥 { ( ℩ 𝑥 𝜑 ) }
5 iota1 ( ∃! 𝑥 𝜑 → ( 𝜑 ↔ ( ℩ 𝑥 𝜑 ) = 𝑥 ) )
6 eqcom ( ( ℩ 𝑥 𝜑 ) = 𝑥𝑥 = ( ℩ 𝑥 𝜑 ) )
7 5 6 bitrdi ( ∃! 𝑥 𝜑 → ( 𝜑𝑥 = ( ℩ 𝑥 𝜑 ) ) )
8 abid ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝜑 )
9 velsn ( 𝑥 ∈ { ( ℩ 𝑥 𝜑 ) } ↔ 𝑥 = ( ℩ 𝑥 𝜑 ) )
10 7 8 9 3bitr4g ( ∃! 𝑥 𝜑 → ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝑥 ∈ { ( ℩ 𝑥 𝜑 ) } ) )
11 1 2 4 10 eqrd ( ∃! 𝑥 𝜑 → { 𝑥𝜑 } = { ( ℩ 𝑥 𝜑 ) } )