Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sniota | ⊢ ( ∃! 𝑥 𝜑 → { 𝑥 ∣ 𝜑 } = { ( ℩ 𝑥 𝜑 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeu1 | ⊢ Ⅎ 𝑥 ∃! 𝑥 𝜑 | |
| 2 | nfab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∣ 𝜑 } | |
| 3 | nfiota1 | ⊢ Ⅎ 𝑥 ( ℩ 𝑥 𝜑 ) | |
| 4 | 3 | nfsn | ⊢ Ⅎ 𝑥 { ( ℩ 𝑥 𝜑 ) } |
| 5 | iota1 | ⊢ ( ∃! 𝑥 𝜑 → ( 𝜑 ↔ ( ℩ 𝑥 𝜑 ) = 𝑥 ) ) | |
| 6 | eqcom | ⊢ ( ( ℩ 𝑥 𝜑 ) = 𝑥 ↔ 𝑥 = ( ℩ 𝑥 𝜑 ) ) | |
| 7 | 5 6 | bitrdi | ⊢ ( ∃! 𝑥 𝜑 → ( 𝜑 ↔ 𝑥 = ( ℩ 𝑥 𝜑 ) ) ) |
| 8 | abid | ⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) | |
| 9 | velsn | ⊢ ( 𝑥 ∈ { ( ℩ 𝑥 𝜑 ) } ↔ 𝑥 = ( ℩ 𝑥 𝜑 ) ) | |
| 10 | 7 8 9 | 3bitr4g | ⊢ ( ∃! 𝑥 𝜑 → ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑥 ∈ { ( ℩ 𝑥 𝜑 ) } ) ) |
| 11 | 1 2 4 10 | eqrd | ⊢ ( ∃! 𝑥 𝜑 → { 𝑥 ∣ 𝜑 } = { ( ℩ 𝑥 𝜑 ) } ) |