Metamath Proof Explorer


Theorem snmbl

Description: A singleton is measurable. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion snmbl ( 𝐴 ∈ ℝ → { 𝐴 } ∈ dom vol )

Proof

Step Hyp Ref Expression
1 snssi ( 𝐴 ∈ ℝ → { 𝐴 } ⊆ ℝ )
2 ovolsn ( 𝐴 ∈ ℝ → ( vol* ‘ { 𝐴 } ) = 0 )
3 nulmbl ( ( { 𝐴 } ⊆ ℝ ∧ ( vol* ‘ { 𝐴 } ) = 0 ) → { 𝐴 } ∈ dom vol )
4 1 2 3 syl2anc ( 𝐴 ∈ ℝ → { 𝐴 } ∈ dom vol )