Metamath Proof Explorer


Theorem snn0d

Description: The singleton of a set is not empty. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypothesis snn0d.1 ( 𝜑𝐴𝑉 )
Assertion snn0d ( 𝜑 → { 𝐴 } ≠ ∅ )

Proof

Step Hyp Ref Expression
1 snn0d.1 ( 𝜑𝐴𝑉 )
2 snnzg ( 𝐴𝑉 → { 𝐴 } ≠ ∅ )
3 1 2 syl ( 𝜑 → { 𝐴 } ≠ ∅ )