Metamath Proof Explorer


Theorem snnen2o

Description: A singleton { A } is never equinumerous with the ordinal number 2. This holds for proper singletons ( A e.V ) as well as for singletons being the empty set ( A e/ V ). (Contributed by AV, 6-Aug-2019)

Ref Expression
Assertion snnen2o ¬ { 𝐴 } ≈ 2o

Proof

Step Hyp Ref Expression
1 1onn 1o ∈ ω
2 php5 ( 1o ∈ ω → ¬ 1o ≈ suc 1o )
3 1 2 ax-mp ¬ 1o ≈ suc 1o
4 ensn1g ( 𝐴 ∈ V → { 𝐴 } ≈ 1o )
5 df-2o 2o = suc 1o
6 5 eqcomi suc 1o = 2o
7 6 breq2i ( 1o ≈ suc 1o ↔ 1o ≈ 2o )
8 ensymb ( { 𝐴 } ≈ 1o ↔ 1o ≈ { 𝐴 } )
9 entr ( ( 1o ≈ { 𝐴 } ∧ { 𝐴 } ≈ 2o ) → 1o ≈ 2o )
10 9 ex ( 1o ≈ { 𝐴 } → ( { 𝐴 } ≈ 2o → 1o ≈ 2o ) )
11 8 10 sylbi ( { 𝐴 } ≈ 1o → ( { 𝐴 } ≈ 2o → 1o ≈ 2o ) )
12 11 con3rr3 ( ¬ 1o ≈ 2o → ( { 𝐴 } ≈ 1o → ¬ { 𝐴 } ≈ 2o ) )
13 7 12 sylnbi ( ¬ 1o ≈ suc 1o → ( { 𝐴 } ≈ 1o → ¬ { 𝐴 } ≈ 2o ) )
14 3 4 13 mpsyl ( 𝐴 ∈ V → ¬ { 𝐴 } ≈ 2o )
15 2on0 2o ≠ ∅
16 ensymb ( ∅ ≈ 2o ↔ 2o ≈ ∅ )
17 en0 ( 2o ≈ ∅ ↔ 2o = ∅ )
18 16 17 bitri ( ∅ ≈ 2o ↔ 2o = ∅ )
19 15 18 nemtbir ¬ ∅ ≈ 2o
20 snprc ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ )
21 20 biimpi ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ )
22 21 breq1d ( ¬ 𝐴 ∈ V → ( { 𝐴 } ≈ 2o ↔ ∅ ≈ 2o ) )
23 19 22 mtbiri ( ¬ 𝐴 ∈ V → ¬ { 𝐴 } ≈ 2o )
24 14 23 pm2.61i ¬ { 𝐴 } ≈ 2o