Description: The class of all singletons is a proper class. See also pwnex . (Contributed by NM, 10-Oct-2008) (Proof shortened by Eric Schmidt, 7-Dec-2008) (Proof shortened by BJ, 5-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | snnex | ⊢ { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abnex | ⊢ ( ∀ 𝑦 ( { 𝑦 } ∈ V ∧ 𝑦 ∈ { 𝑦 } ) → ¬ { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∈ V ) | |
2 | df-nel | ⊢ ( { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∉ V ↔ ¬ { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∈ V ) | |
3 | 1 2 | sylibr | ⊢ ( ∀ 𝑦 ( { 𝑦 } ∈ V ∧ 𝑦 ∈ { 𝑦 } ) → { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∉ V ) |
4 | snex | ⊢ { 𝑦 } ∈ V | |
5 | vsnid | ⊢ 𝑦 ∈ { 𝑦 } | |
6 | 4 5 | pm3.2i | ⊢ ( { 𝑦 } ∈ V ∧ 𝑦 ∈ { 𝑦 } ) |
7 | 3 6 | mpg | ⊢ { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∉ V |