Description: The class of all singletons is a proper class. See also pwnex . (Contributed by NM, 10-Oct-2008) (Proof shortened by Eric Schmidt, 7-Dec-2008) (Proof shortened by BJ, 5-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snnex | ⊢ { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abnex | ⊢ ( ∀ 𝑦 ( { 𝑦 } ∈ V ∧ 𝑦 ∈ { 𝑦 } ) → ¬ { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∈ V ) | |
| 2 | df-nel | ⊢ ( { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∉ V ↔ ¬ { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∈ V ) | |
| 3 | 1 2 | sylibr | ⊢ ( ∀ 𝑦 ( { 𝑦 } ∈ V ∧ 𝑦 ∈ { 𝑦 } ) → { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∉ V ) |
| 4 | vsnex | ⊢ { 𝑦 } ∈ V | |
| 5 | vsnid | ⊢ 𝑦 ∈ { 𝑦 } | |
| 6 | 4 5 | pm3.2i | ⊢ ( { 𝑦 } ∈ V ∧ 𝑦 ∈ { 𝑦 } ) |
| 7 | 3 6 | mpg | ⊢ { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∉ V |