Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
snnz
Next ⟩
prnz
Metamath Proof Explorer
Ascii
Structured
Theorem
snnz
Description:
The singleton of a set is not empty.
(Contributed by
NM
, 10-Apr-1994)
Ref
Expression
Hypothesis
snnz.1
⊢
𝐴
∈ V
Assertion
snnz
⊢
{
𝐴
} ≠ ∅
Proof
Step
Hyp
Ref
Expression
1
snnz.1
⊢
𝐴
∈ V
2
snnzg
⊢
(
𝐴
∈ V → {
𝐴
} ≠ ∅ )
3
1
2
ax-mp
⊢
{
𝐴
} ≠ ∅